Abstract:
An output circuit, included in a device, may determine counter information associated with a packet provided via an output queue managed by the output circuit. The output circuit may determine that a latency event, associated with the output queue, has occurred. The output circuit may provide the counter information and time of day information associated with the counter information. The output circuit may provide a latency event notification associated with the output queue. An input circuit, included in the device, may receive the latency event notification associated with the output queue. The input circuit may determine performance information associated with an input queue. The input queue may correspond to the output queue and may be managed by the input circuit. The input circuit may provide the performance information associated with the input queue and time of day information associated with the performance information.
Abstract:
A system may include receiving a packet, of a packet stream, including control tags in a header portion of the packet and classifying each of the control tags into a category selected from a set of possible categories. The set of possible categories may include an unambiguous interposable (UI) category that is assigned to a control tag that corresponds to an unambiguous parsing interpretation and that is interposable within a sequence of the control tags, and an ambiguous interposable (AI) category that is assigned to a control tag in which the control tag has an ambiguous parsing interpretation and in which the control tag is interposable within the sequence of the control tags. The method may further include determining parsing operations to perform for the packet based on the classified categories of the control tags and based on the packet stream of the packet.
Abstract:
A system selectively drops data from queues. The system includes a drop table that stores drop probabilities. The system selects one of the queues to examine and generates an index into the drop table to identify one of the drop probabilities for the examined queue. The system then determines whether to drop data from the examined queue based on the identified drop probability.
Abstract:
In one embodiment, a method includes sending a first flow control signal to a first stage of transmit queues when a receive queue is in a congestion state. The method also includes sending a second flow control signal to a second stage of transmit queues different from the first stage of transmit queues when the receive queue is in the congestion state.
Abstract:
A system selectively drops data from queues. The system includes a drop table that stores drop probabilities. The system selects one of the queues to examine and generates an index into the drop table to identify one of the drop probabilities for the examined queue. The system then determines whether to drop data from the examined queue based on the identified drop probability.