Abstract:
Disclosed are systems and methods for managing computing resources for a remote session that has been established between a client and a remote server via a communication channel. Such a remote session is configured to automatically adapt image quality of the remote session based on a network status of the communication channel. The described technique includes detecting an inactive state of the remote session, and in turn, modifying at least one network setting of the client using a network shaping rule specified to artificially reduce a network quality of the communication channel used by the client for traffic of the remote session, so as to cause the client to reduce image quality of the remote session and reduce an amount of data exchanged between the remote server and the client.
Abstract:
Systems and methods for supporting inter subnet partitions in a high performance computing environment. In accordance with an embodiment, a fabric manager can define a range of P_Key values, among a plurality of P_Key values, as a inter subnet partition (ISP) P_Key range. The fabric manager can communicate this defined range of P_Key values to a number of subnets, via their subnet managers. The subnet managers in each subnet retain management over their subnets. As there is no central management that configures each side of inter subnet communication, subnet managers on within participating subnets can set up ISP membership, and then exchange information with the other subnet.
Abstract:
Systems and methods for supporting SMP connectivity checks across virtual router in a high performance computing environment. In accordance with an embodiment, SMA model enhancements allow for the possibility to send a packet (i.e., SMP) that is addressed to a local router port. The SMA where the packet is addressed can receive the packet, and then apply a new attribute that defines that the requested information is on a remote node (e.g., connected by a physical link across subnets). In accordance with an embodiment, the SMA can operate as a proxy (receives a SMP and sends another request), or the SMA can modify the original packet and send it on as an inter-subnet packet.
Abstract:
Systems and methods for supporting resource quotas for multicast group creation and membership in a high performance computing environment. In accordance with an embodiment, multicast group membership can present an issue in that inter-subnet partitions can, if left unchecked, runaway with multicast group creation within any given connected subnet. This can starve address map resources at router ports. A quota can be supplied that provides a maximum number of multicast groups any given inter-subnet partition is allowed to create within any given subnet.
Abstract:
An aspect of this invention is a computer-executable method for distributing one or more features associated with information to be transported by a communications network that includes a plurality of end nodes interconnected via a plurality of network nodes. The method includes receiving one or more features associated with information to be transported by the communications network, wherein the one or more features are specified at an end node of the plurality of end nodes for receipt by a network node of the plurality of network nodes; responsive to the one or more received features, configuring at least a portion of the communications network to perform actions on information based upon the features; receiving the information using the plurality of network nodes; and based at least on the received features and the configuring, performing one or more actions with the information. Illustratively, the one or more actions comprise sending the information to one or more edge entity nodes in accordance with the configuring and the received features.
Abstract:
A system selectively drops data from queues. The system includes a drop table that stores drop probabilities. The system selects one of the queues to examine and generates an index into the drop table to identify one of the drop probabilities for the examined queue. The system then determines whether to drop data from the examined queue based on the identified drop probability.
Abstract:
Embodiments of methods for receiving and processing multi-band signals in wideband and narrowband environments are described herein. Other embodiments may be described and claimed.
Abstract:
Apparatus for monitoring a selected tier in a multi-tier computing environment, the apparatus including a context agent and a dynamic tier extension, the context agent associated with the selected tier and coupled with other context agents, each of which is associated with a respective tier, the dynamic tier extension coupled with the context agent and with specific predetermined points of the selected tier, the dynamic tier extension monitoring request traffic passing through the selected tier, the monitored request traffic including at least one entering request received at a request entry port from an adjacent tier, the dynamic tier extension identifying each request in the monitored request traffic and sending at least a request identifier to the context agent, the context agent also receiving information relating to the request context of the entering request from the context agent associated with the adjacent tier, the context agent associating the information relating to the request context of the entering request with the entering request, in accordance with the received request identifier.
Abstract:
Apparatus for monitoring a selected tier in a multi-tier computing environment, the apparatus including a context agent and a dynamic tier extension, the context agent associated with the selected tier and coupled with other context agents, each of which is associated with a respective tier, the dynamic tier extension coupled with the context agent and with specific predetermined points of the selected tier, the dynamic tier extension monitoring request traffic passing through the selected tier, the monitored request traffic including at least one entering request received at a request entry port from an adjacent tier, the dynamic tier extension identifying each request in the monitored request traffic and sending at least a request identifier to the context agent, the context agent also receiving information relating to the request context of the entering request from the context agent associated with the adjacent tier, the context agent associating the information relating to the request context of the entering request with the entering request, in accordance with the received request identifier.
Abstract:
Apparatus for monitoring a selected tier in a multi-tier computing environment, the apparatus including a context agent and a dynamic tier extension, the context agent associated with the selected tier and coupled with other context agents, each of which is associated with a respective tier, the dynamic tier extension coupled with the context agent and with specific predetermined points of the selected tier, the dynamic tier extension monitoring request traffic passing through the selected tier, the monitored request traffic including at least one entering request received at a request entry port from an adjacent tier, the dynamic tier extension identifying each request in the monitored request traffic and sending at least a request identifier to the context agent, the context agent also receiving information relating to the request context of the entering request from the context agent associated with the adjacent tier, the context agent associating the information relating to the request context of the entering request with the entering request, in accordance with the received request identifier.