Abstract:
A burst-mode optical receiver and a timing control method are provided. The receiver receiving the burst-mode optical signal includes a transimpedance amplifier (TIA) for receiving a single current information signal and converting the single current information signal into a single voltage signal, a differential signal converter for converting the single voltage signal, received from the TIA, into differential signals, and an automatic offset control limiting amplifier (AOC-LA) for automatically controlling and amplifying an offset of the differential signals. The receiver further includes a gain controller for generating a gain value control signal based on an intensity of a burst packet of the single voltage signal to control a gain value of the TIA, and a burst detector for receiving the differential signals, detecting burst packets, and generating a burst detection signal for the start timing of each of the burst packets.
Abstract:
An optical line terminal (OLT) of a passive optical network (PON) detects a fault in an optical path configured as a single optical fiber core having an annular shape, divides the optical path into a right path and a left path having bi-directionality based on the fault position in which the fault has occurred, demultiplexes a plurality of downstream optical wavelength signals to be transmitted to at least one optical network terminal (ONT) of each group into an optical wavelength signal of the right path and an optical wavelength signal of the left path according to the position in which the fault has occurred, and outputs the same to at least one of the ONTs of each group.
Abstract:
Proposed is an efficient method of configuration of a transmitter and a receiver for realizing an optical transmission/reception module apparatus including at least one transmission wavelength and two or more reception wavelengths over a time division multiple access passive optical network or an optical network using multiple transmission/reception wavelengths. Further, proposed is a method of configuration of an apparatus which enables optical alignment and assembly in a single package by using a single lens and three different WDM optical filters for a reception module capable of receiving four wavelengths.
Abstract:
Provided is an optical network unit saving power. The optical network unit may include a processor checking whether at least one downward physical block, the upward physical block and a data switching block operate in an idle mode, sequentially transiting at least one downward physical block, an upward physical block and a data switching block to a sleep mode according to the checking result and sequentially transiting an optical transmission-reception block and the medium access control block to a sleep mode by judging whether or not a medium access control block transits to a sleep mode.
Abstract:
A dynamic bandwidth allocation apparatus of a passive optical network detects guarantee agreement information of each transmission container (T-CONT) queue of at least one optical network unit (ONU) that is connected to the dynamic bandwidth allocation apparatus in order to dynamically allocate a bandwidth is provided. The dynamic bandwidth allocation apparatus sets a queue threshold according to a buffer size of each T-CONT queue of at least one ONU, and calculates a service level agreement (SLA) parameter of at least one ONU using guarantee agreement information and a queue threshold. The dynamic bandwidth allocation apparatus allocates a bandwidth for every frame of each ONU using each SLA parameter of at least one ONU.
Abstract:
Provided are a hybrid optical transceiver module having an optical amplifier packaged thereto for outputting a high-power optical signal to remove problems regarding narrow emission angle and optical alignment, and a passive optical network (PON) system having an improved optical network terminal (ONT) accommodation capability using the hybrid optical transceiver module. The hybrid optical transceiver module includes a first package in which an LD (laser diode) is packaged, and a second package in which SOA (semiconductor optical amplifier) and a PD (photo diode) are packaged. The first and second packages are coupled to be one package so as to output a high-power optical signal.
Abstract:
Provided are high power PLC optical Tx module and PLC optical Tx/Rx module. The PLC optical Tx/Rx module is located in an OLT of a PON system. The high power PLC optical Tx/Rx module includes a photodiode, a laser diode, an SOA, an optical coupler, and a PLC platform. The photodiode converts an input optical signal into an electrical signal, and the laser diode generates an optical signal of a predetermined wavelength. The SOA amplifies the optical signal generated by the laser diode, and the optical coupler couples optical signals, outputs the coupled signal to a splitter, divides an optical signal from the slitter, and outputs the divided signals to the photodiode. The PLC platform incorporates the photodiode, the laser diode, the SOA, and the optical coupler into one package to allow an optical signal to be output with high power.
Abstract:
Provided is an optical line terminator (OLT) to recover packet data and a clock from an optical signal including a silent interval. The OLT may receive packet data and a clock from at least one optical network unit (ONU). Even in a silent interval in which the at least one ONU does not transmit packet data, the OLT may successfully recover the clock.
Abstract:
A method of transmitting an Operations, Administration and Maintenance (OAM) message and of processing an error in a Passive Optical Network (PON) system is provided. Using an OAM packet format that may be used in common in the PON system, a process of transmitting or receiving an OAM message may be simplified, an efficiency of the process may be increased, and an Optical Network Unit (ONU) may be managed at a high speed.
Abstract:
A method and apparatus of detecting a rogue optical network unit (ONU) is provided. An optical line terminal (OLT) detects an abnormal upstream transmission to determine a plurality of rogue ONU candidates, and transmits a sleep allow message instructing a transition to a sleep mode to each of the plurality of rogue ONU candidates. The OLT detects the rogue ONU among the plurality of rogue ONU candidates based on upstream transmissions from the plurality of rogue ONU candidates in the sleep mode. Since the detection of the rogue ONU is performed in the sleep mode, the remaining ONUs can transition from the sleep mode to the normal mode after the detection of the rogue ONU is completed, thereby making it possible to rapidly resume upstream communication.