Abstract:
An optical subscriber network for power reduction is provided. The optical subscriber network may include an Optical Line Terminal (OLT) and an Optical Network Terminal (ONT). The OLT may manage a plurality of ONTs by classifying the plurality of ONTs into a sleep group, and may multicast a sleep allowance message only to ONTs included in a predetermined sleep group.
Abstract:
Provided is an automatic optical power control method for an optical line terminal (OLT) of a passive optical network (PON). The automatic optical power control method includes at the OLT, measuring an allowable range of the optical power allowing a normal network operation on the PON, at the OLT, setting an optimum optical signal level within the measured allowable range of the optical power, and at the OLT, adjusting a power level of a transmitter to the set optimum optical signal level. Accordingly, an appropriate power level can be selected depending on an optical distribution network (ODN) structure to drive the transmitter. Also, when the entire optical network units are deactivated, a laser of the transmitter is turned off to thereby minimize unnecessary power consumption at the OLT.
Abstract:
A dynamic bandwidth allocation apparatus of a passive optical network detects guarantee agreement information of each transmission container (T-CONT) queue of at least one optical network unit (ONU) that is connected to the dynamic bandwidth allocation apparatus in order to dynamically allocate a bandwidth is provided. The dynamic bandwidth allocation apparatus sets a queue threshold according to a buffer size of each T-CONT queue of at least one ONU, and calculates a service level agreement (SLA) parameter of at least one ONU using guarantee agreement information and a queue threshold. The dynamic bandwidth allocation apparatus allocates a bandwidth for every frame of each ONU using each SLA parameter of at least one ONU.
Abstract:
Provided is an Optical Network Unit (ONU) and a method of operating the ONU. The ONU may include: a measurement unit to measure a downstream optical signal strength of downstream data received from an Optical Line Termination (OLT) via an optical splitter; a determination unit to determine an upstream optical signal strength based on the measured downstream optical signal strength; and a communication unit to transmit, to the OLT via the optical splitter, upstream data generated based on the determined upstream optical signal strength.
Abstract:
Provided is a method of reducing power consumption of an optical access network (OAN) as much as possible by configuring an optical line terminal (OLT) and optical network terminals (ONTs) in the OAN to support a maximum power-saving mode. According to the method, upon the application of power, an ONT operates normally in an activation mode. The ONT then determines whether the requirements for switching from activation mode to power-saving mode are satisfied. If the requirements are satisfied, the ONT transmits a sleep signal to an OLT, which is a message notifying that the ONT will soon switch to power-saving mode. Thereafter, the ONT switches to power-saving mode and cuts off power for all functions except for power for monitoring and controlling external inputs. The ONT then determines whether the requirements for switching from power-saving mode to activation mode are satisfied. If the requirements are satisfied, the ONT transmits a wake-up signal to the OLT and switches to the activation mode for normal operation.
Abstract:
Provided is an optical line terminator (OLT) to recover packet data and a clock from an optical signal including a silent interval. The OLT may receive packet data and a clock from at least one optical network unit (ONU). Even in a silent interval in which the at least one ONU does not transmit packet data, the OLT may successfully recover the clock.
Abstract:
A method of transmitting an Operations, Administration and Maintenance (OAM) message and of processing an error in a Passive Optical Network (PON) system is provided. Using an OAM packet format that may be used in common in the PON system, a process of transmitting or receiving an OAM message may be simplified, an efficiency of the process may be increased, and an Optical Network Unit (ONU) may be managed at a high speed.
Abstract:
Provided is an apparatus for filtering a multicast port identifier, the apparatus including: a processor to receive an Internet Group Management Protocol (IGMP) message from a switching unit, to verify a traffic reception request received from a subscriber terminal based on the IGMP message, and to store a value in a filtering register based on the traffic reception request; and an Optical Network Unit (ONU) Media Access Control (MAC) manager to filter a packet to be forwarded to the subscriber terminal, using a port identifier for traffic forwarding and reception with the subscriber terminal, and using the value of the filtering register indicating an existence of traffic to be forwarded to the subscriber terminal.
Abstract:
A Passive Optical Network (PON)-based system and method for providing handover between Optical Network Terminals (ONTs) are provided. The PON-based system may include an Optical Line Terminal (OLT), and an ONT to relay communication between the OLT and a mobile terminal. When the mobile terminal is connected to the ONT, the ONT may transmit a WiFi location update alarm message to the OLT, and the OLT may update a Look-Up Table (LUT) in response to the WiFi location update alarm message.
Abstract:
Disclosed herein are a remote node and a telephone station terminal in a passive optical network (PON). The remote node includes an optical circulator that transmits downlink signals input from a downlink optical backbone network to a wavelength distributor and transmits uplink signals input from the wavelength distributor to an uplink optical backbone network different from a downlink optical backbone network; and a wavelength distributor that distributes the downlink signal input from the optical circulator into a plurality of wavelengths to be connected to an optical distribution network and connects the uplink signals input from the optical distribution network to the optical circulator.