摘要:
A reagent cabinet for an automated processing apparatus. The reagent cabinet has a housing, and a drawer slidably mounted in the housing. The drawer has a lower deck adapted to receive a fluid reservoir, and an upper deck located above the lower deck and adapted to receive a fluid supply container. A supply connection hose is provided to selectively connect the fluid supply container to the fluid reservoir. A reservoir connection hose is provided to selectively connect to the fluid reservoir and to convey fluid from the fluid reservoir to a downstream location outside the cabinet. A pump is mounted on the drawer. The pump is adapted to convey fluid through either the supply connection hose or the reservoir connection hose.
摘要:
A reagent cabinet for an automated processing apparatus. The reagent cabinet has a housing, and a drawer slidably mounted in the housing. The drawer has a lower deck adapted to receive a fluid reservoir, and an upper deck located above the lower deck and adapted to receive a fluid supply container. A supply connection hose is provided to selectively connect the fluid supply container to the fluid reservoir. A reservoir connection hose is provided to selectively connect to the fluid reservoir and to convey fluid from the fluid reservoir to a downstream location outside the cabinet. A pump is mounted on the drawer. The pump is adapted to convey fluid through either the supply connection hose or the reservoir connection hose.
摘要:
An automated method for assuring sample adequacy. The method includes providing a sample in a testing container, activating an illumination source to pass an illumination beam through the testing container and into the sample, and detecting an intensity of an emitted beam. The emitted beam includes at least a portion of the illumination beam that has been scattered by the sample. The method also includes generating a sample turbidity measurement based on the intensity of the emitted beam, and determining, based on the sample turbidity measurement, an adequacy of the sample to provide accurate results in a primary test.
摘要:
An automated sample processing system having a sample input adapted to simultaneously receive a number of sample containers, a reagent input adapted to receive one or more new reagent supplies, a consumable input adapted to receive one or more new consumable supplies, a solid waste output adapted to receive used consumable supplies, a liquid waste output adapted to receive one or more used reagent supplies, and a processing center. The processing center includes a decapper adapted to remove a lid from at least one sample container, an aspirator adapted to remove a specimen from the at least one sample container and transfer the specimen to an output vessel, and a capper adapted to replace the lid on the at least one sample container. The system also includes a sample output adapted to receive the output vessel, and a user interface adapted to receive an input from the user to indicate the identity of the at least one sample container, and control at least one operation based on a physical property of the at least one sample container.
摘要:
An automated sample processing system having a sample input adapted to simultaneously receive a number of sample containers, a reagent input adapted to receive one or more new reagent supplies, a consumable input adapted to receive one or more new consumable supplies, a solid waste output adapted to receive used consumable supplies, a liquid waste output adapted to receive one or more used reagent supplies, and a processing center. The processing center includes a decapper adapted to remove a lid from at least one sample container, an aspirator adapted to remove a specimen from the at least one sample container and transfer the specimen to an output vessel, and a capper adapted to replace the lid on the at least one sample container. The system also includes a sample output adapted to receive the output vessel, and a user interface adapted to receive an input from the user to indicate the identity of the at least one sample container, and control at least one operation based on a physical property of the at least one sample container.
摘要:
This disclosure generally relates to methods of measuring the adequacy of a clinical sample by estimating the cell count in known fluid volumes using light scattering techniques, in particular turbidity. In another aspect, this disclosure provides machines for measuring the adequacy of a clinical sample by estimating the cell count. These machines can be used for high-throuhput processing of clinical samples. In another aspect this disclosure provides methods of determining whether testing of a clinical sample would be informative. Particular examples using these methods in conjunction with the HC2 HPV test are provided herein.
摘要:
A sample adequacy measurement system having sample tubes and a housing having a receptacle to receive the sample tubes. The housing has sample adequacy measurement stations that each have a light source and a sample detector. The light source generates an illumination beam directed into one of the sample tubes. The sample detector is positioned along the tube, and receives at least a portion of the illumination beam scattered by turbidity in the sample tube. The detector is positioned at the end of an emitted beam path that extends in a plane that is perpendicular to the vertical direction and is oriented at a non-perpendicular angle with respect to the longitudinal axis of the sample tube unit. This reduce the likelihood that the emitted beam will pass through a damaged portion of the respective one of the sample tubes by passing the light through a protected portion of the tube.
摘要:
Cervical cancer screening using HPV testing can yields a high negative predictive value of approximately 99.5% for prediction of cervical lesions of CIN3 or greater. However, sample adequacy can affect the number of at-risk women that may go undetected due to the inadequacy of the tested sample. We have approached this challenge of increasing sample assurance of the negative results by estimating the cell count in known fluid volumes using light scattering techniques, in particular turbidity. These methods may be used as a fast, convenient, and economical method for measuring sample adequacy for other uses as well. Particular examples using these methods in conjunction with the HC2 HPV test are provided herein.