Abstract:
Therapeutic system with implantable therapeutic unit (ITU) comprising control unit (CU), memory, telemetry unit connected (in)directly to CU for wireless bidirectional transmission of data to/from external device (ED) and detection unit for detecting physiological patient data or operational data. CU triggers outgoing data transmission (DT) from ITU to ED based on preselected internal events and establishes standby mode for reception on part of telemetry unit for receiving beginning (header) of incoming DT from ED to therapeutic unit exclusively within preselected response time window after DT from ITU to ED. System designed to add to incoming DT follow-up signaling data which signals an imminent follow-up examination, whereby CU also prompts sensor unit at preselected time point in response to receipt of follow-up signaling data to detect preselected physiological data required for follow-up examination or to detect operational data of therapeutic and store in memory and transmit with subsequent outgoing DT to ED.
Abstract:
Therapeutic system with implantable therapeutic unit (ITU) comprising control unit (CU), memory, telemetry unit connected (in)directly to CU for wireless bidirectional transmission of data to/from external device (ED) and detection unit for detecting physiological patient data or operational data. CU triggers outgoing data transmission (DT) from ITU to ED based on preselected internal events and establishes standby mode for reception on part of telemetry unit for receiving beginning (header) of incoming DT from ED to therapeutic unit exclusively within preselected response time window after DT from ITU to ED. System designed to add to incoming DT follow-up signaling data which signals an imminent follow-up examination, whereby CU also prompts sensor unit at preselected time point in response to receipt of follow-up signaling data to detect preselected physiological data required for follow-up examination or to detect operational data of therapeutic and store in memory and transmit with subsequent outgoing DT to ED.
Abstract:
The invention relates to the use of a compound of formula R—N-[A-NH2]2 (1) wherein R represents a linear or branched alkyl group or alkenyl group having 6 to 20 carbon atoms while A represents a C2 to C4 alkylene group, as collector in silicate flotation.
Abstract:
The present invention relates a flotation reagent for sulfidic ores, containing at least one compound of formula (1), wherein R2, R3, R4, R5, R6 and R7, independent of one another, represent hydrogen or groups containing 1 to 15 carbon atoms or groups containing oxygen or nitrogen, and at least another compound serving as collector and containing at least one sulfur atom that is directly bound to a carbon or phosphorus atom, wherein the carbon or phosphorus atom is directly bound to at least another sulfur atom or an oxygen atom.
Abstract:
The present invention relates a flotation reagent for sulfidic ores, containing at least one compound of formula (1), wherein R2, R3, R4, R5, R6 and R7, independent of one another, represent hydrogen or groups containing 1 to 15 carbon atoms or groups containing oxygen or nitrogen, and at least another compound serving as collector and containing at least one sulfur atom that is directly bound to a carbon or phosphorus atom, wherein the carbon or phosphorus atom is directly bound to at least another sulfur atom or an oxygen atom.
Abstract:
A method for the flotation of sulfide ores is disclosed. The method comprises contacting the sulfide ores with a composition comprising at least one compound of the formula where R1, R2 and R3 independently of one another are alkyl groups having 1 to 18 carbon atoms, alkenyl groups having 2 to 18 carbon atoms, aryl groups having 6 to 10 carbon atoms, or alkylaryl groups having 7 to 10 carbon atoms.
Abstract:
This invention relates to the use of a compound of the formula (I) where R1 is a hydrocarbon group having 1-40 carbon atoms, R2 is an aliphatic hydrocarbon group having 2-4 carbon atoms, and also R3 is an alkoxy group, n is in the range from 1 to 50, and m is 1 or 2, as flotation reagent in silicate flotation R1—O—R2—NH(2-m)—[(R3)n—H]m (I)
Abstract:
A method for the flotation of sulfide ores is disclosed. The method comprises contacting the sulfide ores with a composition comprising at least one compound of the formula where R1, R2 and R3 independently of one another are alkyl groups having 1 to 18 carbon atoms, alkenyl groups having 2 to 18 carbon atoms, aryl groups having 6 to 10 carbon atoms, or alkylaryl groups having 7 to 10 carbon atoms.
Abstract:
The invention relates to a method for producing alkenyl succinic anhydrides of formula (1), in which R represents a C4 to C250 alkylene radical that can be linear or branched. The method involves the reaction of maleic acid, maleic anhydride, fumaric acid or esters thereof and an alkene which contains 4-250 carbon atoms at from 150 to 250° C. in the presence of a synergistic mixture of a primary antioxidant, a secondary antioxidant, and a metal deactivator.
Abstract:
The invention relates to a method for producing alkenyl succinic anhydrides of formula (1), in which R represents a C4 to C250 alkylene radical that can be linear or branched. The method involves the reaction of maleic acid, maleic anhydride, fumaric acid or esters thereof and an alkene which contains 4-250 carbon atoms at from 150 to 250° C. in the presence of a synergistic mixture of a primary antioxidant, a secondary antioxidant, and a metal deactivator.