Abstract:
Therapeutic system with implantable therapeutic unit (ITU) comprising control unit (CU), memory, telemetry unit connected (in)directly to CU for wireless bidirectional transmission of data to/from external device (ED) and detection unit for detecting physiological patient data or operational data. CU triggers outgoing data transmission (DT) from ITU to ED based on preselected internal events and establishes standby mode for reception on part of telemetry unit for receiving beginning (header) of incoming DT from ED to therapeutic unit exclusively within preselected response time window after DT from ITU to ED. System designed to add to incoming DT follow-up signaling data which signals an imminent follow-up examination, whereby CU also prompts sensor unit at preselected time point in response to receipt of follow-up signaling data to detect preselected physiological data required for follow-up examination or to detect operational data of therapeutic and store in memory and transmit with subsequent outgoing DT to ED.
Abstract:
The invention consists of a system for remote programming of an implantable medical device such as a heart pacemaker, defibrillator or the like, wherein the system includes a programmable personal device (e.g., an implant) and a service center. The service center has a programming monitoring unit which determines a programming time endpoint which depends on the point in time at which a programming order was sent to the implant, and which cancels or deletes the programming order if the service center has not received a programming confirmation confirming successful receipt, execution, and/or forwarding of the programming order by the implant by the programming time endpoint.
Abstract:
Therapeutic system with implantable therapeutic unit (ITU) comprising control unit (CU), memory, telemetry unit connected (in)directly to CU for wireless bidirectional transmission of data to/from external device (ED) and detection unit for detecting physiological patient data or operational data. CU triggers outgoing data transmission (DT) from ITU to ED based on preselected internal events and establishes standby mode for reception on part of telemetry unit for receiving beginning (header) of incoming DT from ED to therapeutic unit exclusively within preselected response time window after DT from ITU to ED. System designed to add to incoming DT follow-up signaling data which signals an imminent follow-up examination, whereby CU also prompts sensor unit at preselected time point in response to receipt of follow-up signaling data to detect preselected physiological data required for follow-up examination or to detect operational data of therapeutic and store in memory and transmit with subsequent outgoing DT to ED.
Abstract:
The invention consists of a system for remote programming of an implantable medical device such as a heart pacemaker, defibrillator or the like, wherein the system includes a programmable personal device (e.g., an implant) and a service center. The service center has a programming monitoring unit which determines a programming time endpoint which depends on the point in time at which a programming order was sent to the implant, and which cancels or deletes the programming order if the service center has not received a programming confirmation confirming successful receipt, execution, and/or forwarding of the programming order by the implant by the programming time endpoint.
Abstract:
Individual implantable medical device (IMD) follow-up support unit supports follow-up session for IMD. IMD includes a data input for receiving IMD data which includes an IMD identification code identifying an individual IMD and IMD type, and IMD irregularity messages including data identifying type/date of irregularity, a database for storing IMD, a follow-up history dataset that includes date(s) of latest follow-up session. Includes a data processor that generates a list of irregularities taking place after previous follow-up session, calculate an individual IMD irregularity index for each type of irregularity based on IMD irregularity messages for an individual IMD via IMD identification code, calculate for type of irregularity an average irregularity index over the same irregularity over all IMD irregularity messages associated to the same type of IMD, compare calculated individual IMD irregularity index (IIII) with the calculated average irregularity index (ARI) and generate an indication if IIII significantly differs from the ARI.