摘要:
An improved embalming composition and method has been developed. The embalming fluid is a mixture including glutaraldehyde, an aromatic ether of ethanol phenoxyethanol, at least one alcohol, and a polyhydric alcohol humectant. The formulation has no formaldehyde.
摘要:
An improved preservative and embalming fluid and method has been developed. The embalming fluid is a mixture including glutaraldehyde, an aromatic ether of ethanol, e.g. phenoxyethanol, at least one alcohol, and a polyhydric alcohol humectant. The formulation has no formaldehyde. The concentrate is diluted with water for use and may include a borate buffer.
摘要:
An improved preserving fluid and method has been developed. The fluid is a mixture including glutaraldehyde, an aromatic ether of ethanol e.g. phenoxyethanol, at least one alcohol, and a polyhydric alcohol humectant. The formulation has no formaldehyde.
摘要:
An improved embalming composition and method has been developed. The embalming fluid is a mixture including glutaraldehyde, an aromatic ether of ethanol, e.g. phenoxy-ethanol, at least one alcohol, and a polyhydric alcohol humectant. The formulation has no formaldehyde.
摘要:
A method for functionalizing the wall of single-wall or multi-wall carbon nanotubes involves the use of acyl peroxides to generate carbon-centered free radicals. The method allows for the chemical attachment of a variety of functional groups to the wall or end cap of carbon nanotubes through covalent carbon bonds without destroying the wall or endcap structure of the nanotube. Carbon-centered radicals generated from acyl peroxides can have terminal functional groups that provide sites for further reaction with other compounds. Organic groups with terminal carboxylic acid functionality can be converted to an acyl chloride and further reacted with an amine to form an amide or with a diamine to form an amide with terminal amine. The reactive functional groups attached to the nanotubes provide improved solvent dispersibility and provide reaction sites for monomers for incorporation in polymer structures. The nanotubes can also be functionalized by generating free radicals from organic sulfoxides.
摘要:
A lubricant for improved performance in glass molding. The lubricant is smokeless, odorless, non-toxic and non-combustible. It is applied infrequently, such as once a shift or less. The lubricant is carbon monofluoride (CF.sub.x).sub.n wherein "x" is about 0.7 or, preferably, above 1.00. Novel methods of application of the lubricant are disclosed.
摘要:
The present invention is directed to methods of integrating carbon nanotubes into epoxy polymer composites via chemical functionalization of carbon nanotubes, and to the carbon nanotube-epoxy polymer composites produced by such methods. Integration is enhanced through improved dispersion and/or covalent bonding with the epoxy matrix during the curing process. In general, such methods involve the attachment of chemical moieties (i.e., functional groups) to the sidewall and/or end-cap of carbon nanotubes such that the chemical moieties react with either the epoxy precursor(s) or the curing agent(s) (or both) during the curing process. Additionally, in some embodiments, these or additional chemical moieties can function to facilitate dispersion of the carbon nanotubes by decreasing the van der Waals attractive forces between the nanotubes.
摘要:
This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium. Alternatively, fluorine may be fully or partially removed from fluorine derivatized carbon nanotubes by reacting the fluorine derivatized carbon nanotubes with various amounts of hydrazine, substituted hydrazine or alkyl amine. The present invention also provides seed materials for growth of single wall carbon nanotubes comprising a plurality of single wall carbon nanotubes or short tubular molecules having a catalyst precursor moiety covalently bound or physisorbed on the outer surface of the sidewall to provide the optimum metal cluster size under conditions that result in migration of the metal moiety to the tube end.
摘要:
The present invention is directed to methods of integrating carbon nanotubes into epoxy polymer composites via chemical functionalization of carbon nanotubes, and to the carbon nanotube-epoxy polymer composites produced by such methods. Integration is enhanced through improved dispersion and/or covalent bonding with the epoxy matrix during the curing process. In general, such methods involve the attachment of chemical moieties (i.e., functional groups) to the sidewall and/or end-cap of carbon nanotubes such that the chemical moieties react with either the epoxy precursor(s) or the curing agent(s) (or both) during the curing process. Additionally, in some embodiments, these or additional chemical moieties can function to facilitate dispersion of the carbon nanotubes by decreasing the van der Waals attractive forces between the nanotubes.
摘要:
This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium. Alternatively, fluorine may be fully or partially removed from fluorine derivatized carbon nanotubes by reacting the fluorine derivatized carbon nanotubes with various amounts of hydrazine, substituted hydrazine or alkyl amine. The present invention also provides seed materials for growth of single wall carbon nanotubes comprising a plurality of single wall carbon nanotubes or short tubular molecules having a catalyst precursor moiety covalently bound or physisorbed on the outer surface of the sidewall to provide the optimum metal cluster size under conditions that result in migration of the metal moiety to the tube end.