Abstract:
The present disclosure relates to the technical field of semiconductors, and proposes a semiconductor structure and a manufacturing method thereof. The semiconductor structure includes a base and a communication portion, the communication portion being located in the base and including a first connection layer, a second connection layer, and a third connection layer, the second connection layer being located on the first connection layer, and the third connection layer being located on the second connection layer; wherein the first connection layer, the second connection layer, and the third connection layer include different conductive materials, and thermal expansion coefficients of the second connection layer and the third connection layer are both less than a thermal expansion coefficient of the first connection layer.
Abstract:
A low temperature (e.g., lower than 0° C.) or a high temperature (e.g., higher than 50° C.) can degrade battery performance, especially within lithium ion (Li-ion) batteries, and even accelerate the capacity fading. To ensure a long term and safe operation of Li-ion batteries, the battery thermal management (BTM) system becomes a crucial part to control the temperature of each discrete battery or every battery within a battery pack. Within the prior art a phase change material (PCM) has been employed combined with a graphite matrix. However, the graphite lowers the latent heat of entire BTM system and increases the manufacturing cost. Embodiments of the invention provide sealed mandrels or elements which immobilize the PCM without impacting the latent heat of the entire BTM system and increasing manufacturing costs.
Abstract:
This patent provides a battery heating technique that preheats the battery from extreme cold condition (e.g., −30° C.) to an appropriate operating temperature. This technique belongs to the battery energy storage and application field. The battery heating system includes a simple external control circuit and a battery (or battery pack) for heating. During the heating stage, the external control circuit and battery (or battery pack) forms a close loop. A continuous and pulse current will flow through the battery and generate joule heat on the battery internal resistance to preheat the battery (or battery pack). The heating technique can be used on any types of batteries without changing their internal and external structures, and this technique is low cost and can preheats the battery (or battery pack) from −30° C. to 0° C. in one minute. By using the internal resistance as the heat source, the heating technique can heat the battery (or battery pack) uniformly and is of high efficiency.
Abstract:
The present invention focuses on an analytical model for fast and accurate scatter estimation. The present invention uses the Klein-Nishina (KN) formula as a starting point, which gives the Compton scattering differential cross-section for an interaction point. For a direct integration of the point scatter kernel over the irradiated volume, the large number of KN formulae (e.g., amount of solid angle subtended) and rays traced required for calculating attenuation makes the computation very expensive. The present invention reduces the 3D formulation into an efficient 2D approach by integrating the KN formula along an interaction line of tissue-equivalent medium. An average attenuation length was assumed for each interaction point on the beam to reduce the number of rays traced. In the case of kilovoltage (kV) x rays as the imaging source and a small imaging field, with in-field scatter, the line integral derived, can be approximated by a compact analytical form.
Abstract:
A method includes receiving a search query from a user at a search engine. The method also includes performing a search responsive to the search query to obtain a set of results. The set of results is ordered at least partially based on a distance between a profile of a user and a profile of each result in the ordered set of results. At least one profile of a result is based on an aggregate of a plurality of user profiles.
Abstract:
An ultra wideband active antenna platform can be deployed globally. A plug-and-play radio unit is removably attached to an outside of the active antenna. The PAPR can be removably plugged into a docking station to provide different technology or frequency bands specific for customers in different regions without the costly replacement of the whole antenna.In addition, the heat-generating sources (power amplifiers) with heavy heatsink structures are separated from the main antenna body, so that the whole active antenna can be installed separately since the installation weight of the antenna would be reduced.
Abstract:
The present invention discloses a prism sheet and a display device comprising the prism sheet for improving performances of a backlight module in a liquid crystal display device. The prism sheet comprises a first substrate and a second substrate, wherein the first substrate comprises a first surface and a second surface opposite to the first surface, and the second surface comprises a plurality of first protrusions arranged in parallel along a first direction; the second substrate comprises a third surface and a fourth surface opposite to the third surface, the third surface comprises a plurality of second protrusions arranged in parallel along the first direction, and the fourth surface comprises a plurality of third protrusions arranged in parallel along a second direction; and the second surface and the third surface are joined by meshing of the first protrusions with the second protrusions.
Abstract:
Magnetic stripe-based transaction enabled mobile communication device embodiments are presented which generally involve a mobile communication device which has been configured to perform transactions that heretofore were completed using a magnetic stripe found on magnetic-stripe cards. In one general embodiment, a mobile communication device generates magnetic stripe data which is used to perform a magnetic stripe-based transaction. To this end, the mobile communication device includes a magnetic stripe device and a computing device. The computing device stores the magnetic stripe data, and the magnetic stripe device is employed to transfer the stored magnetic stripe information so that it can be used to conduct transactions as if a traditional magnetic stripe card were being used.
Abstract:
The present invention focuses on an analytical model for hist and accurate scatter estimation. The present invention uses the Klein-Nishina (KN) formula as a starting point, which gives the Compton scattering differential cross-section for an interaction point. For a direct integration of the point scatter kernel over the irradiated volume, the large number of KN formulae. (e.g., amount of solid angle subtended) and rays traced required for calculating attenuation makes the computation very expensive. The present invention reduces the 3D formulation into an efficient 2D approach by integrating the KN formula along an interaction line of tissue-equivalent medium. An average attenuation length was assumed for each interaction point on the beam to reduce the number of rays traced. In the case of kilovoltage (kV) x rays as the imaging source and a small imaging field, with in-field scatter, the line integral derived, can be approximated by a compact analytical form.
Abstract:
An in-situ fabrication method for a silicon solar cell includes the following steps: pretreating a silicon chip; placing the pretreated silicon chip in an implantation chamber of a plasma immersion ion implantation machine; completing the preparation of black silicon via a plasma immersion ion implantation process; making a PN junction and forming a passivation layer on the black silicon; after making the PN junction and forming the passivation layer, removing the black silicon from the plasma immersion ion implantation machine; preparing a metal back electrode on the back of the black silicon; preparing a metal grid on the passivation layer; obtaining a solar cell after encapsulation. Said method enables black silicon preparation, PN junction preparation, and passivation layer formation in-situ, greatly reducing the amount of equipment needed for the preparation of solar cells and the preparation cost. In addition, the method is simple and easy to control.