Abstract:
An immunoassay device comprises a plurality of carbon nanotubes having a first end and a second end, wherein the nanotubes are aligned substantially parallel relative to one another; a substrate responsive to an electrochemical signal, the substrate being attached to the first end of at least a portion of the plurality of nanotubes; and a capture antibody attached to at least a portion of the nanotubes not at the first end. An immunoassay method comprises providing the disclosed immunoassay device, contacting the immunoassay with a test sample under conditions suitable for binding of an analyte to the capture antibody, wherein binding of the analyte generates, directly or indirectly, an electrochemical signal and detecting the signal. Methods of making the disclosed immunoassay device are also disclosed.
Abstract:
Disclosed herein is a sensor comprising a conduit; the conduit comprising an organic polymer; a working electrode; the working electrode being etched and decorated with a nanostructured material; a reference electrode; and a counter electrode; the working electrode, the reference electrode and the counter electrode being disposed in the conduit; the working electrode, the reference electrode and the counter electrode being separated from each other by an electrically insulating material; and wherein a cross-sectional area of the conduit that comprises a section of the working electrode, a section of the reference electrode and a section of the counter electrode is exposed to detect analytes.
Abstract:
Disclosed herein too is a method that includes dispersing nanotubes in media that comprises flavin moieties substituted with solubilizing side chains, and/or non-flavin containing molecular species; self-assembling the flavin moieties and other non-flavin containing molecular species in a pattern that is orderly wrapped around the nanotubes to form a composite; introducing desired amounts of an optional reagent that competes with self-assembly in order to disturb the wrapping around nanotubes with moderate order; and centrifuging the mass of the nanotubes and the composites to extract the composite from other nanotubes that are not in composite form.
Abstract:
Scanning localized evaporation and deposition of an evaporant on a substrate utilizes a mask assembly comprised of a series of mask elements with openings thereon and spaced apart in a stack. The openings are aligned so as to direct the evaporant therethrough onto the substrate. The mask elements are heated and the stack may include a movable shutter element to block openings in adjacent mask elements. The evaporant streams are usually vertical but some may be oblique to the substrate, and they may be of different materials.
Abstract:
The invention decribes an apparatus, Scanning Localized Evaporation Methodology (SLEM) for the close proximity deposition of thin films with high feature definition, high deposition rates, and significantly improved material economy. An array of fixed thin film heating elements, each capable of being individually energized, is mounted on a transport mechanism inside a vacuum chamber. The evaporable material is deposited on a heating element. The SLEM system loads the surface of heating elements, made of foils, with evaporable material. The loaded thin film heating element is transported to the substrate site for re-evaporation. The re-evaporation onto a substrate, which is maintained at the desired temperature, takes place through a mask. The mask, having patterned openings dictated by the structural requirements of the fabrication, may be heated to prevent clogging of the openings. The translation of the substrate past the evaporation site permits replication of the pattern over its entire surface. A multiplicity of fixed thin film heating element arrays is provided that can operate simultaneously or in sequence. Multi-layered structures of evaporable materials with high in-plane spatial pattern resolution can be deposited using this apparatus. In one version of the invention, the transport of the evaporant-loaded thin film heating elements is accomplished by the use of cylindrical rotors on whose circumference the heating elements are mounted.
Abstract:
This invention discloses novel device structures for full color flat panel displays utilizing pseudomorphically cladded quantum dot nanocrystals. Different colors are obtained by changing the core size and composition of the quantum dots while maintaining a nearly defect-free lattice at the core-cladding interface. Light emission from the quantum dot core is obtained either by injection or by avalanche electroluminescence. A nanotip emitter device is also presented. These generic devices can be addressed using a variety of conventional display drivers, including active and passive matrix configurations.
Abstract:
A method for producing a ultrathin semiconducting film, utilizes a substrate with a reactive functionalized surface which is contacted with a reactant compound of a divalent and trivalent chelating metal to produce a metallo-functionalized surface. The metallo-functionalized surface is contacted with bisquinoline or a bisquinoline to produce a deposit of an oligomeric metallo-bisquinoline chelate, which is then contacted with the reactant metal compound to produce a fresh metallo-functionalized surface on the deposit. The fresh metallo-functionalized surface is contacted with the bisquinoline reactant to produce a further deposit of the oligomeric metallo-bisquinoline chelate, and these steps are repeated until a desired thickness of the deposit has been attained.
Abstract:
An implantable bio-sensing platform architecture that enables the wireless selection, calibration and reading of multiple sensors, as well as checking the power levels of the solar powering source energizing various electronic and optoelectronic devices and circuits embedded in the platform. It also permits checking the operation of the potentiostats interfacing with each amperometric analyte sensor. The platform is flexible to include FET based sensors for protein sensing as well as other applications including pH sensing. In addition, other physiological sensors can be integrated in the platform.
Abstract:
Disclosed herein is a device comprising a biosensor having disposed upon it a coating; the coating comprising a polymer matrix; where the polymer matrix is operative to facilitate the inwards and outwards diffusion of analytes and byproducts to and from the sensing element of the biosensor; and a sacrificial moiety; the sacrificial moiety being dispersed in the polymer matrix, where the sacrificial moiety erodes with time and increases the porosity of the polymer matrix thus offsetting decreases in analyte permeability as a result of biofouling.
Abstract:
A biosensor comprises a substrate; a reference electrode; a working electrode; a counter electrode; and a plurality of permeability adjusting spacers. The reference electrode, the working electrode and the plurality of permeability adjusting spacers are all being disposed to be substantially parallel to each other to create a plurality of enzyme containing porous sections. The enzyme containing porous sections contain an enzyme; where the enzyme is operative to react with a metabolite to determine the concentration of the metabolite. By combining a number of the aforementioned biosensors, the differential concentration of a target enzyme or protein is determined by monitoring the changes on its metabolite substrates.