Abstract:
A scanned-stylus atomic force microscope (AFM) employing the optical lever technique, and method of operating the same. The AFM of the invention includes a light source and a scanned optical assembly which guides light emitted from the light source onto point on a cantilever during scanning thereof. A moving light beam is thus created which will automatically track the movement of the cantilever during scanning. The invention also allows the light beam to be used to measure, calibrate or correct the motion of the scanning mechanism, and further allows viewing of the sample and cantilever using an optical microscope.
Abstract:
Exemplary embodiments include a method for performing business process modeling. The method includes identifying capabilities, activities, and requirements associated with a business problem or an opportunity. The activities are operable for implementing the capabilities and the capabilities are operable for resolving the business problem or exploiting the opportunity. For each of the activities, the method includes selecting at least one corresponding process module that includes listings of attributes applicable to the activities, selecting at least one of the attributes from the listings, and defining transition artifacts for integrating selected process modules. The method also includes compiling the transition artifacts, selected attributes, and selected activities with corresponding process modules, and generating a business process model as a result of the compilation.
Abstract:
A scanned-stylus atomic force microscope (AFM) employing the optical lever technique, and method of operating the same. The AFM of the invention includes a light source and a scanned optical assembly which quides light emitted from the light source onto a point on a cantilever during scanning thereof. A moving light beam is thus created which will automatically track the movement of the cantilever during scanning. The invention also allows the light beam to be used to measure, calibrate or correct the motion of the scanning mechanism, and further allows viewing of the sample and cantilever using an optical microscope.
Abstract:
A scanned-stylus atomic force microscope (AFM) employing the optical lever technique, and method of operating the same. The AFM of the invention includes a light source and a scanned optical assembly which guides a light beam emitted from the laser source onto a point on said cantilever during scanning thereof. A moving laser beam is thus created which will automatically track the movement of the cantilever during scanning. The invention also allows the laser beam to be used to measure, calibrate or correct the motion of the scanning mechanism, and further allows viewing of the sample and cantilever using an optical microscope.
Abstract:
Disclosed are various actuators for probe exchangers for use in scanning probe microscopes (SPMs). The probe exchange actuators are designed so as to impose no net forces on a probe clamp attached to the high resolution piezoelectric positioning mechanism to which the probe is being transferred. These actuators therefore impose no net force on the delicate high resolution piezoelectric positioning mechanism, thus helping protect it from physical damage during the probe exchange process.
Abstract:
A balanced momentum probe holder in an apparatus for characterizing a sample surface has first and second members each having extensible and retractable distal ends. The distal ends extend or retract substantially simultaneously in response to a signal from a detector thus balancing the momentums of the first and second members and reducing the net momentum of the probe holder to essentially zero. Balancing the momentum of the probe holder reduces parasitic oscillations in the apparatus thus enhancing performance.
Abstract:
A scanned-stylus atomic force microscope (AFM) employing the optical lever technique, and method of operating the same. The AFM of the invention includes a light source and a scanned optical assembly which guides a light beam emitted from the laser source onto a point on said cantilever during scanning thereof. A moving laser beam is thus created which will automatically track the movement of the cantilever during scanning. The invention also allows the laser beam to be used to measure, calibrate or correct the motion of the scanning mechanism, and further allows viewing of the sample and cantilever using an optical microscope.
Abstract:
A scanned-stylus atomic force microscope (AFM) employing the optical lever technique, and method of operating the same. The AFM of the invention includes a light source and a scanned optical assembly which guides light emitted from the light source onto a point on a cantilever during scanning thereof. A moving light beam is thus created which will automatically track the movement of the cantilever during scanning. The invention also allows the light beam to be used to measure, calibrate or correct the motion of the scanning mechanism, and further allows viewing of the sample and cantilever using an optical microscope.
Abstract:
Exemplary embodiments include a method for implementing business process modules for performing business process modeling. The method includes identifying tasks required in order to achieve a capability and designing a process module for enabling the capability. The designing includes interconnecting logic flow among the tasks resulting in an optimized, repeatable pattern of logically transformed inputs to outputs required for achieving the capability. The method also includes selecting and associating attributes to the tasks. The attributes are selected from categories including: information technology component services, data, operational business rules, roles, and measurements. The method further includes defining and associating metadata with the process module. The metadata describes functional capabilities provided by the process module and business and technical contexts into which the process module is used.
Abstract:
An integrated cantilever sensor array system that accurately detects and measures the presence of target substances in various environmental conditions. The integrated cantilever sensor array system comprises a cantilever sensor measurement head, a cantilever sensor system for measuring the oscillatory properties of the cantilevers and a measurement chamber. The measurement head includes a cantilever array having at least one cantilever, a light source and a detector positioned to detect incoming light reflected by the cantilevers within the cantilever array. The cantilever sensor system measures the oscillatory properties generated by the cantilevers within the cantilever array. The system includes the cantilever array and a detection system that measures a signal related to the bending of the cantilever. In addition, optional components such as a high frequency clock, Q-Control, may be added to more accurately measure the oscillation of the cantilevers within the cantilever array. The measurement chamber includes a flow cell, a cantilever sensor array mounted within the flow cell. The flow cell is designed to minimize dead volume and unwanted air bubbles within the cell, which may reduce accuracy of measurement.