Abstract:
A transmission including a variator capable of continuously changing a speed ratio, a stepped transmission mechanism arranged in series with the variator and in which a gear position is switched and a shilling control unit executing stepped shifting repeatedly performing a shifting suppression phase and an upshift phase when a stepped upshift shifting condition is satisfied is provided, and the shifting control unit completes a change from an n-th gear position of the stepped transmission mechanism to an n+1 gear position if the stepped transmission mechanism is at the n-th gear position before the through speed ratio reaches a Highest speed ratio of the variator when the stepped shifting is performed.
Abstract:
In a transmission comprising a driving force source, an oil pressure source that generates oil pressure lifting a driving force from the driving force source, a first power transmission unit having a first mechanical biasing mechanism, and a second power transmission unit having a second mechanical biasing mechanism, opening/closing unit is provided in an oil passage through which the oil pressure is supplied to the second power transmission unit in order to close the oil passage until the oil pressure supplied to the first power transmission unit reaches or exceeds a predetermined value.
Abstract:
The present invention is provided with a hydraulic control circuit including a hydraulic pump driven by a driving power source in order to supply an oil pressure to a hydraulic circuit, a hydraulic auxiliary unit for supplying an accumulated oil pressure to the hydraulic circuit, and a control valve for supplying at least one of oil pressures of the hydraulic pump and the hydraulic auxiliary unit to pulleys, and a control unit for executing a coast stop control to stop the driving power source while traveling and controlling, when an increase of torque inputted to the continuously variable transmission is detected or predicted during the coast stop control, the control valve so as to supply an oil pressure of the hydraulic auxiliary unit to the pulleys.
Abstract:
In gear-shift control apparatus and method for a vehicular transmission, a variator which is interposed between an engine and driving wheels and which is capable of modifying a gear (speed) ratio continuously; a sub transmission which is installed in series with the variator and which is capable of switching a plurality of gear-shift stages through a replacement of engagement elements; and a transmission controller which performs a gear ratio control for the variator and a gear-shift stage control for the sub transmission are installed. During a deceleration through a second speed stage of the sub transmission, when the variator is a state in which the variator is at a lowest gear (speed) ratio, a down-shift in which the sub transmission is forced to perform the gear-shift from a second speed stage to a first speed stage, with the variator maintained at the lowest gear (speed) ratio.
Abstract:
A vehicle control device controls a vehicle including a first oil pump adapted to be driven by power generated by a first drive source, automatically stop when a predetermined condition is satisfied, and supply oil to a power transmission unit and a second oil pump adapted to supply oil to the power transmission unit when the drive source is in an automatically stopped state, and includes a control unit adapted to continue an automatic stop until it is determined to restart the first drive source based on a parameter with which a reduction in drive force responsiveness to a drive force request from a driver, not including the stop of the first drive source, can be determined after an automatic stop command of the first drive source is output and if there is an abnormality in the second oil pump.
Abstract:
A control device for continuously variable transmission is composed of a continuously variable transmission mechanism and friction engagement elements, and includes a control unit for decreasing, during a coast stop control to stop a driving power source in a traveling state of a vehicle, a transmission torque capacity transmittable by the friction engagement elements to fall under a belt capacity being torque transmittable by a belt using a holding force of pulleys.