Abstract:
A medical instrument system includes actuators, a medical instrument, and a control system operably connected to the actuators. The medical instrument includes an end portion and transmission systems, each of which couples the end portion to an actuator of the actuators such that the actuators are operable to drive the transmission systems to move the end portion. The control system is configured to execute operations including determining a difference between a current configuration of the end portion and a desired configuration of the end portion, and operating the actuators to apply tensions to the transmission systems based on the difference and based on constant offset tensions. The constant offset tensions are independent of current tensions experienced by the transmission systems.
Abstract:
A system and method of variable velocity control of an instrument by a computer-assisted device includes a computer-assisted device that includes an actuator and one or more processors. To perform an operation with an instrument coupled to the computer-assisted device, the one or more processors are configured to set a velocity set point of the actuator to an initial velocity, monitor force or torque applied by the actuator to actuate the instrument, when the applied force or torque is above a first force or torque limit, determine whether a total duration of a set of pauses occurring during the operation of the instrument is below a maximum pause threshold, and in response to determining that the total duration is below the maximum pause threshold, pause the operation of the instrument.
Abstract:
A surgical system comprises a patient side cart, a motor, and a telesurgically operated instrument. The telesurgically operated instrument is coupled to the patient side cart and comprises a transmission and a surgical end effector having a plurality of end effector components. The transmission is driven by the motor and comprises a first effector drivetrain comprising a first gear, a first input gear, and a first locker arm, and a camshaft defining a longitudinal axis, the camshaft comprising a first power cam and a first locker cam. The motor is configured to drive the camshaft to a plurality of rotational states, the camshaft being configured to rotate about the longitudinal axis of the camshaft. In a first rotational state of the plurality of rotational states, the first power cam is configured to engage the first input gear with the first gear, and the first locker cam is configured to disengage the first locker arm from the first gear.
Abstract:
Surgical assemblies, instruments, and related methods are disclosed that control tissue gripping force. A method for controlling grip force in a robotic surgical instrument includes actuating an input link of a spring assembly. An actuation force is transferred from the input link to an output link of the spring assembly. Relative movement is inhibited between the input link and the output link when the transferred actuation force is below a predetermined level with a preloaded spring of the spring assembly. The input link is moved relative to the output link by deforming the preloaded spring when the transferred actuation force increases above the predetermined level. A grip mechanism is actuated via the output link.
Abstract:
A surgical system comprises a patient side cart, a motor, and a telesurgically operated instrument. The telesurgically operated instrument is coupled to the patient side cart and comprises a transmission and a surgical end effector having a plurality of end effector components. The transmission is driven by the motor and comprises a first effector drivetrain comprising a first gear, a first input gear, and a first locker arm, and a camshaft defining a longitudinal axis, the camshaft comprising a first power cam and a first locker cam. The motor is configured to drive the camshaft to a plurality of rotational states, the camshaft being configured to rotate about the longitudinal axis of the camshaft. In a first rotational state of the plurality of rotational states, the first power cam is configured to engage the first input gear with the first gear, and the first locker cam is configured to disengage the first locker arm from the first gear.
Abstract:
Surgical assemblies, instruments, and related methods are disclosed that control tissue gripping force. A method for controlling grip force in a robotic surgical instrument includes actuating an input link of a spring assembly. An actuation force is transferred from the input link to an output link of the spring assembly. Relative movement is inhibited between the input link and the output link when the transferred actuation force is below a predetermined level with a preloaded spring of the spring assembly. The input link is moved relative to the output link by deforming the preloaded spring when the transferred actuation force increases above the predetermined level. A grip mechanism is actuated via the output link.
Abstract:
A method comprises generating a command to move a surgical robotic manipulator to a predetermined safety configuration and locking the robotic manipulator in the safety configuration in response to receiving the command. The method further comprises detecting if a mock instrument has been mounted on the robotic manipulator when the robotic manipulator is in the safety configuration. If the mock instrument is detected, an override command is generated to unlock the robotic manipulator from the safety configuration.
Abstract:
A method comprises driving, by a motor, a camshaft of a transmission of a telesurgically operated instrument to a first rotational state of a plurality of rotational states. The camshaft defines a longitudinal axis and rotates about the longitudinal axis. The method further comprises engaging, in the first rotational state, a first input gear of a first effector drivetrain of the transmission with a first gear of the first effector drivetrain via a first power cam of the camshaft. The method further comprises disengaging, in the first rotational state, a first locker arm of the first effector drivetrain from the first gear via a first locker cam of the camshaft.
Abstract:
A method of engaging a medical instrument with a medical instrument manipulator comprises receiving an indication that a first input coupling of the medical instrument is positioned adjacent to a first drive output of the manipulator. The first drive output is driven by a first actuating element. In response to receiving the indication, the first drive output is rotated in a first rotational direction. A determination is made, by one or more processors, as to whether a resistance torque is experienced by the first actuating element after rotating the first drive output in the first rotational direction. If the resistance torque is not experienced by the first actuating element after rotating of the first drive output in the first rotational direction, the first drive output is rotated in a second rotational direction. A determination is made, by the one or more processors, as to whether a resistance torque is experienced by the first actuating element after rotating of the first drive output in the second rotational direction.
Abstract:
A wrist joint, such as for a surgical instrument, may include a first disc, a second disc adjacent the first disc, a drive tendon connecting the first disc and the second disc. The first disc and the second disc may include respective opposing gear features that intermesh with one another. The first disc and the second disc may further include opposing load bearing surfaces. In response to tensioning the drive tendon, the first and second discs rotate relative to each other. The first and second discs may have a maximum rotational range of motion greater than about +/−45 degrees relative to each other.