Abstract:
A surgical instrument having a jaw lock includes first jaw and second jaws that are moveable from an open position to a closed position. At least one of the jaws includes a jaw slot having a jaw closing portion and a jaw locking portion. A pin positioned within the jaw slot is advanced by a blade. The blade includes a cutting edge and a notch defining a first edge configured to advance the pin to move the jaws to, and secure the jaws in, the closed position.
Abstract:
Stapler cartridges and surgical apparatus that include a stapler cartridge can include a knife that retracts into the stapler cartridge after cutting stapled tissue to prevent an operator being cut by the knife during replacement of the used stapler cartridge with a new stapler cartridge. A stapler cartridge includes a staple pushing shuttle, a knife member slidably coupled with the staple pushing shuttle, and a cartridge body. The staple pushing shuttle is slidably coupled to the cartridge body. The cartridge body includes a guide track engaged by the knife member and configured so that a cutting blade of the knife member protrudes from the cartridge body during a first portion of a distal movement of the staple pushing shuttle and the cutting blade is retracted into the cartridge body during a second portion of the distal movement of the staple pushing shuttle.
Abstract:
Surgical tools that include a mechanisms for transmitting torque through an angle are disclosed. A surgical tool includes an instrument shaft, a drive shaft, an end effector, a driven shaft, and a coupling member. The instrument shaft is elongated along an instrument shaft axis. The drive shaft is mounted to the instrument shaft for rotation about a drive shaft axis. The end effector is coupled with the instrument shaft so that an orientation of the end effector can be varied relative to the instrument shaft. The driven shaft is coupled with the end effector to articulate a feature of the end effector via rotation of the driven shaft relative to the end effector. The coupling member couples the drive shaft with the driven shaft so that a rate of rotation of the drive shaft and a rate of rotation of the driven shaft about a driven shaft axis are equal.
Abstract:
An electrically energized medical instrument uses one or more drive cables to both actuate mechanical components of a wrist mechanism or an effector and to electrically energize the effector. Electrical isolation can be achieved using an insulating main tube through which drive cables extend from a backend mechanism to the effector, an insulating end cover that leaves only the desired portions of the effector exposed, and one or more seals to prevent electrically conductive liquid from entering the main tube. Component count and cost may be further reduced using a pair of pulleys that are shared by four drive cables.
Abstract:
Stapler cartridges and surgical apparatus that include a stapler cartridge can include a knife that retracts into the stapler cartridge after cutting stapled tissue to prevent an operator being cut by the knife during replacement of the used stapler cartridge with a new stapler cartridge. A stapler cartridge includes a staple pushing shuttle, a knife member slidably coupled with the staple pushing shuttle, and a cartridge body. The staple pushing shuttle is slidably coupled to the cartridge body. The cartridge body includes a guide track engaged by the knife member and configured so that a cutting blade of the knife member protrudes from the cartridge body during a first portion of a distal movement of the staple pushing shuttle and the cutting blade is retracted into the cartridge body during a second portion of the distal movement of the staple pushing shuttle.
Abstract:
Minimally invasive surgical methods employ an offset drive shaft to actuate an end effector. A minimally invasive surgical method includes introducing an end effector to an internal surgical site. The end effector includes an end effector base that is coupled to the instrument shaft via a wrist. An end effector articulation mechanism is operated to reorient the end effector base relative to the instrument shaft. A surgical task is performed by operating a motor to rotate an offset drive shaft relative to the instrument shaft to actuate the end effector.
Abstract:
A system and method of variable velocity control of a surgical instrument in a computer-assisted medical device includes a surgical instrument having an end effector located at a distal end of the instrument, an actuator, and one or more drive mechanisms for coupling force or torque from the actuator to the end effector. To perform an operation with the instrument, the computer-assisted medical device is configured to set a velocity set point of the actuator to an initial velocity and monitor force or torque applied by the actuator. When the applied force or torque is above a first force or torque limit it is determined whether a continue condition for the operation is satisfied. When the continue condition is satisfied the operation is paused and when the continue condition is not satisfied it is determined whether forced firing of the actuator should take place.
Abstract:
End effectors with redundant closing mechanisms, and related tools and methods are disclosed. The disclosed end effectors may be particularly beneficial when used for minimally invasive surgery. An example surgical tool comprises an elongate shaft having a proximal end and a distal end, a tool body disposed at the distal end of the shaft, a jaw movable relative to the tool body between a clamped configuration and an open configuration, a first actuation mechanism coupled with the jaw and operable to vary the position of the jaw relative to the tool body between the clamped configuration and the open configuration, and a second actuation mechanism coupled with the jaw. The second actuation mechanism has a first configuration where the jaw is held in the clamped configuration and a second configuration where the position of the jaw relative to the tool body is unconstrained by the second actuation mechanism.
Abstract:
Sealing assemblies and methods are disclosed for sealing a surgical instrument having an internal drive shaft subject to lateral displacement. A sealing assembly includes a rigid portion shaped to interface with an instrument shaft of the surgical instrument. A laterally oriented slot is open at a radially perimeter location and configured to receive an o-ring seal via the perimeter location. Apertures are disposed on opposing sides of the slot and open to the slot. The apertures are configured to receive the drive shaft there through and are larger than the drive shaft to accommodate lateral displacement of the drive shaft. The slot includes opposing internal sides spaced to interface with opposed axial surfaces of the o-ring seal. The seal inhibits axial transmission of an insufflated gas and/or bodily fluids while accommodating lateral displacement of the drive shaft.
Abstract:
Mechanisms, assemblies, systems, tools, and methods incorporating the use of an offset drive shaft within an independently rotating member are provided. An example mechanism includes a base and a main shaft mounted to rotate relative to the base, a first drive shaft mounted inside the main shaft, and a first drive feature engaged with the first drive shaft. The main shaft includes a proximal end, a distal end, and a main shaft rotational axis defined therebetween. The first drive shaft is offset from the main shaft rotational axis. A first drive feature rotational axis is defined for the first drive feature and is fixed relative to the base as the main shaft rotates. The first drive feature rotates the first drive shaft.