Abstract:
Parallel execution of machine learning programs is provided. Program code is received. The program code contains at least one parallel for statement having a plurality of iterations. A parallel execution plan is determined for the program code. According to the parallel execution plan, the plurality of iterations is partitioned into a plurality of tasks. Each task comprises at least one iteration. The iterations of each task are independent. Data required by the plurality of tasks is determined. An access pattern by the plurality of tasks of the data is determined. The data is partitioned based on the access pattern.
Abstract:
Parallel execution of machine learning programs is provided. Program code is received. The program code contains at least one parallel for statement having a plurality of iterations. A parallel execution plan is determined for the program code. According to the parallel execution plan, the plurality of iterations is partitioned into a plurality of tasks. Each task comprises at least one iteration. The iterations of each task are independent. Data required by the plurality of tasks is determined. An access pattern by the plurality of tasks of the data is determined. The data is partitioned based on the access pattern.
Abstract:
Hybrid parallelization strategies for machine learning programs on top of MapReduce are provided. In one embodiment, a method of and computer program product for parallel execution of machine learning programs are provided. Program code is received. The program code contains at least one parallel for statement having a plurality of iterations. A parallel execution plan is determined for the program code. According to the parallel execution plan, the plurality of iterations is partitioned into a plurality of tasks. Each task comprises at least one iteration. The iterations of each task are independent.
Abstract:
In a method for analyzing a large data set using a statistical computing environment language operation, a processor generates code from the statistical computing environment language operation that can be understood by a software system for processing machine learning algorithms in a MapReduce environment. A processor transfers the code to the software system for processing machine learning algorithms in a MapReduce environment. A processor invokes execution of the code with the software system for processing machine learning algorithms in a MapReduce environment.
Abstract:
A method for global data flow optimization for machine learning (ML) programs. The method includes receiving, by a storage device, an initial plan for an ML program. A processor builds a nested global data flow graph representation using the initial plan. Operator directed acyclic graphs (DAGs) are connected using crossblock operators according to inter-block data dependencies. The initial plan for the ML program is re-written resulting in an optimized plan for the ML program with respect to its global data flow properties. The re-writing includes re-writes of: configuration dataflow properties, operator selection and structural changes.
Abstract:
Embodiments of the invention relate to sparsity-driven matrix representation. In one embodiment, a sparsity of a matrix is determined and the sparsity is compared to a threshold. Computer memory is allocated to store the matrix in a first data structure format based on the sparsity being greater than the threshold. Computer memory is allocated to store the matrix in a second data structure format based on the sparsity not being greater than the threshold
Abstract:
In a method for analyzing a large data set using a statistical computing environment language operation, a processor generates code from the statistical computing environment language operation that can be understood by a software system for processing machine learning algorithms in a MapReduce environment. A processor transfers the code to the software system for processing machine learning algorithms in a MapReduce environment. A processor invokes execution of the code with the software system for processing machine learning algorithms in a MapReduce environment.
Abstract:
One embodiment provides a method for runtime piggybacking of concurrent data-parallel jobs in task-parallel machine learning (ML) programs including intercepting, by a processor, executable jobs including executable map reduce (MR) jobs and looped jobs in a job stream. The processor queues the executable jobs, and applies runtime piggybacking of multiple jobs by processing workers of different types. Runtime piggybacking for a ParFOR (parallel for) ML program is optimized including configuring the runtime piggybacking based on processing worker type, degree of parallelism and minimum time thresholds.
Abstract:
A method for optimization of machine learning (ML) workloads on a graphics processor unit (GPU). The method includes identifying a computation having a generic pattern commonly observed in ML processes. Hierarchical aggregation spanning a memory hierarchy of the GPU for processing is performed for the identified computation including maintaining partial output vector results in shared memory of the GPU. Hierarchical aggregation for vectors is performed including performing intra-block aggregation for multiple thread blocks of a partial output vector results on GPU global memory.
Abstract:
A method for optimization of machine learning (ML) workloads on a graphics processor unit (GPU). The method includes identifying a computation having a generic pattern commonly observed in ML processes. An optimized fused GPU kernel is employed to exploit temporal locality for inherent data-flow dependencies in the identified computation. Hierarchical aggregation spanning a memory hierarchy of the GPU for processing for the identified computation is performed. GPU kernel launch parameters are estimated following an analytical model that maximizes thread occupancy and minimizes atomic writes to GPU global memory.