HYBRID PARALLELIZATION STRATEGIES FOR MACHINE LEARNING PROGRAMS ON TOP OF MAPREDUCE
    2.
    发明申请
    HYBRID PARALLELIZATION STRATEGIES FOR MACHINE LEARNING PROGRAMS ON TOP OF MAPREDUCE 审中-公开
    用于MAPREDUCE顶部机器学习程序的混合并行策略

    公开(公告)号:US20160124730A1

    公开(公告)日:2016-05-05

    申请号:US14993722

    申请日:2016-01-12

    CPC classification number: G06F8/445 G06F8/443 G06F8/45 G06F8/452 G06F9/4881

    Abstract: Parallel execution of machine learning programs is provided. Program code is received. The program code contains at least one parallel for statement having a plurality of iterations. A parallel execution plan is determined for the program code. According to the parallel execution plan, the plurality of iterations is partitioned into a plurality of tasks. Each task comprises at least one iteration. The iterations of each task are independent. Data required by the plurality of tasks is determined. An access pattern by the plurality of tasks of the data is determined. The data is partitioned based on the access pattern.

    Abstract translation: 提供机器学习程序的并行执行。 接收到程序代码。 程序代码包含至少一个具有多个迭代的并行的语句。 确定程序代码的并行执行计划。 根据并行执行方案,将多个迭代划分为多个任务。 每个任务包括至少一个迭代。 每个任务的迭代是独立的。 确定多个任务所需的数据。 确定数据的多个任务的访问模式。 数据根据访问模式进行分区。

    HYBRID PARALLELIZATION STRATEGIES FOR MACHINE LEARNING PROGRAMS ON TOP OF MAPREDUCE
    3.
    发明申请
    HYBRID PARALLELIZATION STRATEGIES FOR MACHINE LEARNING PROGRAMS ON TOP OF MAPREDUCE 有权
    用于MAPREDUCE顶部机器学习程序的混合并行策略

    公开(公告)号:US20150378696A1

    公开(公告)日:2015-12-31

    申请号:US14317016

    申请日:2014-06-27

    CPC classification number: G06F8/445 G06F8/443 G06F8/45 G06F8/452 G06F9/4881

    Abstract: Hybrid parallelization strategies for machine learning programs on top of MapReduce are provided. In one embodiment, a method of and computer program product for parallel execution of machine learning programs are provided. Program code is received. The program code contains at least one parallel for statement having a plurality of iterations. A parallel execution plan is determined for the program code. According to the parallel execution plan, the plurality of iterations is partitioned into a plurality of tasks. Each task comprises at least one iteration. The iterations of each task are independent.

    Abstract translation: 提供了MapReduce之上的机器学习程序的混合并行化策略。 在一个实施例中,提供了用于并行执行机器学习程序的方法和计算机程序产品。 接收到程序代码。 程序代码包含至少一个具有多个迭代的并行的语句。 确定程序代码的并行执行计划。 根据并行执行方案,将多个迭代划分为多个任务。 每个任务包括至少一个迭代。 每个任务的迭代是独立的。

    R-LANGUAGE INTEGRATION WITH A DECLARATIVE MACHINE LEARNING LANGUAGE
    7.
    发明申请
    R-LANGUAGE INTEGRATION WITH A DECLARATIVE MACHINE LEARNING LANGUAGE 有权
    语言整合与声明机器学习语言

    公开(公告)号:US20150347101A1

    公开(公告)日:2015-12-03

    申请号:US14293223

    申请日:2014-06-02

    CPC classification number: G06F8/41

    Abstract: In a method for analyzing a large data set using a statistical computing environment language operation, a processor generates code from the statistical computing environment language operation that can be understood by a software system for processing machine learning algorithms in a MapReduce environment. A processor transfers the code to the software system for processing machine learning algorithms in a MapReduce environment. A processor invokes execution of the code with the software system for processing machine learning algorithms in a MapReduce environment.

    Abstract translation: 在使用统计计算环境语言操作分析大数据集的方法中,处理器从统计计算环境语言操作生成可由MapReduce环境中用于处理机器学习算法的软件系统理解的代码。 处理器将代码传输到软件系统,以便在MapReduce环境中处理机器学习算法。 处理器在MapReduce环境中调用用于处理机器学习算法的软件系统的代码执行。

Patent Agency Ranking