Abstract:
An automatic gain control (AGC) method according to the present invention applies an initial gain by a digital AGC circuit in a timeslot is determined using a final calculated gain from the same timeslot in the previous frame together with an offset factor. An erase function is activated for a given data sample block when the number of saturated data samples that are detected within the block exceeds a threshold value. The power measurement made by the AGC circuit and used to update the gain is adjusted based on the number of measured data samples that are saturated. These elements provide a gain limiting function and allows limiting of the dynamic range for further signal processing
Abstract:
A method for differential phase evaluation of M-ary communication data is employed in which the data consists of N sequential symbols r1 . . . rN, each having one of M transmitted phases. Selected sequences of Nnull1 elements that represent possible sequences of phase differentials are evaluated using multiple-symbol differential detection. Using r1 as the reference for each phase differential estimate, sNnull1 phase differential sequences are selected in the form (P2i, P3i, . . . , PNi) for inull1 to s for evaluating said symbol set, where s is predetermined and 1
Abstract:
The present invention is for a receiver incorporated into User Equipment (UE) or base stations of a code division multiple access (CDMA) communication system. The UE and base station are in communication with one of the plurality of base stations and receives a communication signal through the receiver. The communication signal is correlated using a delay locked code tracking loop, that estimates and tracks a channel delay. The tracking loop comprises a reference code generator and an interpolator for generating timed signal versions in response to said communication. A timed signal correlator, included in the tracking loop for correlating at least two of the timed signal versions with the code reference signal. The result of the correlation is used for generating an error signal. An automatic power normalization loop (APN), that is responsive to the interpolator, generates a power error signal that normalizes the error signal through a normalization circuit.
Abstract:
A method for a user equipment (UE) to establish a communication link comprising the steps of receiving an input communication signal at an initial search frequency, processing the input communication signal to retrieve a primary scrambling code, the retrieval of the primary scrambling code being a code decision, and adjusting the search frequency of the UE in response to the code decision.
Abstract:
The present invention is directed to an improved telecommunication receiver for receiving wireless multi-path communication signals. A novel RAKE receiver and a time diverse integration system for the calculation of the relative power of received signal samples are provided. Preferably, the receiver is embodied in a UE or base station of a CDMA wireless telecommunication system, such as a 3GPP system.
Abstract:
The present invention is a user equipment (UE) comprising a system for establishing a communication link. The system includes a first, second and third module and a controller. The first module first processes a communication signal and generates an index value associated with a primary synchronization code within the communication signal. The second module second processes the communication signal in response to the index value and a peak sample extracted from the first module and retrieves a code group number, slot offset and secondary synchronization code. The third module third processes the communication signal and retrieves a primary scrambling code in response to the code group number and the slot offset. The controller, which is coupled to the first, second and third modules, controls the adjustment of a search frequency of the UE to retrieve the primary scrambling code in the communication signal.
Abstract:
A wireless communication system, method and apparatus are provided for soft and softer handover of a mobile wireless transmit/receive unit (WTRU) between two or more base stations and/or base station sectors. A network control unit assigns selected base stations to transmit communication data to the WTRU based on the WTRU being disposed in base station or base station sector geographic range of service. A WTRU joint detector (JD) receiver is configured to receive and process one or more wireless data signals in each of a series of timeframes where each signal received within a common timeslot has a unique channel encoding of the same communication data. The JD receiver has a plurality of channel estimators that estimate received signals within a common timeslot and a combiner configured to decode and combine the channel estimates to derive a resultant data signal.
Abstract:
A transmitting station performs closed loop power control prior to a transmission pause. A closed loop transmission power level prior to the pause is determined. A reference signal is received and a received power level of the reference signal prior to and during the transmission pause is determined. The measured reference signal received power levels are compared to a transmit power level of the reference signals to produce a pathloss estimate of the reference signal prior to and during the transmission pause. A new transmit power level is determined by adjusting the closed loop transmission power level by a change between the prior to and during pathloss estimates. A transmission power level of the transmitting station is set to the determined new transmit power level. A communication is transmitted at the set transmission power level.
Abstract:
The invention provides embodiments to facilitate cell search. In one embodiment, received samples are split into a plurality of sample sets for processing. Each of the sets is processed and an accumulated result is divided by an estimated noise value. In another embodiment, a code correlator correlates the received signal with a primary synchronization code and an auxiliary code correlator having a same length as the code correlator correlates the received signal with a code having a low cross correlation with the primary synchronization code. In another embodiment, a division of an accumulated result with a noise estimate is performed using indexes of the most significant bits.
Abstract:
A digital timing synchronizer of a receiver is provided for timing synchronization to a transmitter in a wireless communication system, wherein the received signal has a timing error with respect to a reference code. A channel estimator estimates an initial code phase of the received signal. A code generator generates a timing reference code that is adjustable by integer increments. An interpolation feedback circuit is configured for interpolation and correction of the timing error, whereby the interpolation is achieved through an integer code shift, plus a quantized fractional adjustment selected from a look-up table of quantized fractional adjustment values and their associated predetermined interpolator coefficients, from which a time corrected version of the received signal is produced.