Abstract:
An illumination system that includes a light source device and an algorithm unit is provided. The light source includes a color temperature adjustable light source. The algorithm unit is coupled to the light source device and outputs a control signal to the light source device according to a reflection spectrum of an object, a visual color matching function, a visual preference correction function, or a combination of the above. The light source device outputs an illumination beam according to the control signal, so as to develop target visual perception of the object while the object is being irradiated by the illumination beam. A method for developing target visual perception of an object is also provided.
Abstract:
An illumination system that includes a light source device and an algorithm unit is provided. The algorithm unit is coupled to the light source device and outputs a control signal to the light source device according to a reflection spectrum of an object, a visual color matching function, a visual preference correction function, or a combination of the above. The light source device outputs an illumination beam according to the control signal, so as to develop target visual perception of the object while the object is being irradiated by the illumination beam. A method for developing target visual perception of an object is also provided.
Abstract:
A light source apparatus including a light-emitting module and a control unit is provided. The light-emitting module is configured to provide a light. The control unit makes the light emitted from the light-emitting module switched between a first light and a second light. A spectrum of the first light is different from a spectrum of the second light, and color temperatures of the first light and the second light are substantially the same as each other.
Abstract:
A head-mounted eye tracking system including a light-transmitting substrate, an eye tracker, and a signal processor is provided. The eye tracker is configured to sense eyeballs of a wearer. The eye tracker includes a plurality of light-emitting devices and a plurality of sensing devices. The plurality of light-emitting devices are configured to emit a tracking beam. The plurality of sensing devices are configured to receive the tracking beam reflected by the eyeballs of the wearer. The signal processor is electrically connected to the eye tracker. The plurality of sensing devices are embedded in grooves within the light-transmitting substrate.
Abstract:
An illumination system that includes a light source device and an algorithm unit is provided. The algorithm unit is coupled to the light source device and outputs a control signal to the light source device according to a reflection spectrum of an object, a visual color matching function, a visual preference correction function, or a combination of the above. The light source device outputs an illumination beam according to the control signal, so as to develop target visual perception of the object while the object is being irradiated by the illumination beam. A method for developing target visual perception of an object is also provided.
Abstract:
A testing method and testing system for a semiconductor element are provided. The method includes following steps. A level of a testing electrostatic discharge (ESD) voltage is determined. A plurality of sample components is provided. The testing ESD voltage is imposed on the sample components for testing ESD decay rates of the sample components. ESD withstand voltages of the sample components are detected. The relation between the ESD withstand voltages and the electrostatic discharge rates are recorded to a database. The testing ESD voltage is imposed on the semiconductor element for testing an ESD decay rate of the semiconductor element. The database is looked up according to the ESD decay rate of the semiconductor element to determine an ESD withstand voltage of the semiconductor element.
Abstract:
The disclosure discloses a light emitting diode testing apparatus, which includes a power supply module, a probe, a control unit and a data acquisition unit. The power supply module provides a first current or a second current to a testing item. The probe measures characteristics of the testing item. The control unit controls the power supply module to provide the first current or the second current. The data acquisition unit acquires the characteristics of the testing item from the probe. The power supply module includes a first current source, at least one second current source and at least one protector. The first current source provides the first current to the testing item. The at least one second current source provides at least one additional current. The at least one protector prevents the first current from feeding back to the at least one second current source.
Abstract:
A thermal image sensing system including at least one thermal sensor, at least one light sensor, an image identification module, a storage module and a computing module is provided. The thermal sensor senses thermal radiation emitted by an object and generates a thermal radiation image signal correspondingly. The light sensor senses visible light reflected by the object and generates at least one visible light image signal correspondingly. The image identification module receives the visible light image signal generated by the light sensor and determines a material of the object according to the at least one visible light image signal. The storage module stores a radiation coefficient of the material of the object. The computing module calculates a surface temperature of the object according to the radiation coefficient of the material of the object and the thermal radiation emitted by the object. A thermal image sensing method is also provided.
Abstract:
A thermal image sensing system including at least one thermal sensor, at least one light sensor, an image identification module, a storage module and a computing module is provided. The thermal sensor senses thermal radiation emitted by an object and generates a thermal radiation image signal correspondingly. The light sensor senses visible light reflected by the object and generates at least one visible light image signal correspondingly. The image identification module receives the visible light image signal generated by the light sensor and determines a material of the object according to the at least one visible light image signal. The storage module stores a radiation coefficient of the material of the object. The computing module calculates a surface temperature of the object according to the radiation coefficient of the material of the object and the thermal radiation emitted by the object. A thermal image sensing method is also provided.
Abstract:
An illumination system that includes a light source device and an algorithm unit is provided. The algorithm unit is coupled to the light source device and outputs a control signal to the light source device according to a reflection spectrum of an object, a visual color matching function, a visual preference correction function, or a combination of the above. The light source device outputs an illumination beam according to the control signal, so as to develop target visual perception of the object while the object is being irradiated by the illumination beam. A method for developing target visual perception of an object is also provided.