摘要:
The need for the delivery of insulin by injection can be reduced or eliminated by delivering an aerosolized monomeric insulin formulation. Repeatability of dosing and more particularly the repeatability of the blood concentration versus time profile is improved relative to regular insulin. The blood concentration versus time profile is substantially unaffected by specific aspects of the patient's breathing maneuver at delivery. Further, the rate at which blood glucose is lowered is increased by the use of monomeric insulin. Particles of insulin and in particular monomeric insulin delivered to the surface of lung tissue will be absorbed into the circulatory system. The monomeric insulin may be a dry powder but is preferably in a liquid formulation delivered to the patient from a hand-held, self-contained device which automatically releases an aerosolized burst of formulation. The device includes a sensor which is preferably electronic which measures inspiratory flow and volume which measurement can be used to control the point of drug release.
摘要:
The need for the delivery of insulin by injection can be reduced or eliminated by delivering an aerosolized monomeric insulin formulation. Repeatability of dosing and more particularly the repeatability of the blood concentration versus time profile is improved relative to regular insulin. The blood concentration versus time profile is substantially unaffected by specific aspects of the patient's breathing maneuver at delivery. Further, the rate at which blood glucose is lowered is increased by the use of monomeric insulin. Particles of insulin and in particular monomeric insulin delivered to the surface of lung tissue will be absorbed into the circulatory system. The monomeric insulin may be a dry powder but is preferably in a liquid formulation delivered to the patient from a hand-held, self-contained device which automatically releases an aerosolized burst of formulation. The device includes a sensor which is preferably electronic which measures inspiratory flow and volume which measurement can be used to control the point of drug release.
摘要:
The need for the delivery of insulin by injection can be reduced or eliminated by a method whereby an aerosolized insulin formulation is delivered to a patient's lungs and the rate at which the insulin is absorbed into the blood is increased by the use of an inhale-exhale breathing maneuver. Particles of insulin delivered to the surface of lung tissue will be absorbed into the circulatory system. The rate of absorption is enhanced by instructing the patient to inhale maximally and thereafter exhale maximally. This maneuver causes a spike in the rate at which insulin enters the circulatory system thereby increasing the rate at which glucose is removed from the circulatory system. The insulinmay be a dry powder but is preferably in a liquid formulation delivered to the patient from a hand-held, self-contained device which automatically releases an aerosolized burst of formulation. The device includes a sensor which is preferably electronic which measures inspiratory flow and volume which measurement can be used to control the point of drug release. The sensor can also assist the patient in the inhale-exhale maneuver.
摘要:
Dosages of inhaled insulin are controlled within a narrow range by controlling the total volume of air inhaled by a patient. By repeatedly delivering aerosolized insulin with the same total inhaled volume of air, the amount of insulin delivered to the patient each time is consistent. A device for delivering insulin by inhalation is disclosed which device comprises a means for measuring inhaled volume and for halting inhalation at a pre-determined point. The device also comprises an adjustable means for applying various amounts of force to a container of formulation to expel different amounts of drug from the container based on the force applied.
摘要:
Dosages of inhaled insulin are controlled within a narrow range by controlling the total volume of air inhaled by a patient. By repeatedly delivering aerosolized insulin with the same total inhaled volume of air, the amount of insulin delivered to the patient each time is consistent. A device for delivering insulin by inhalation is disclosed which device comprises a means for measuring inhaled volume and for halting inhalation at a pre-determined point. The device also comprises an adjustable means for applying various amounts of force to a container of formulation to expel different amounts of drug from the container based on the force applied.
摘要:
The need for the delivery of insulin by injection can be reduced or eliminated by delivering aerosolized insulin. Repeatability of dosing is obtainable by using either regular insulin or monomeric insulin. When delivering insulin (not monomeric) by inhalation, the total inhaled volume should be about the same at each delivery to obtain repeatable results. The patient can be coached (by teaching) to inhale a given amount of air and can also be coached (by teaching) to inhale at a given flow rate. Further, the rate at which blood glucose is lowered is increased by the use of monomeric insulin. Particles of insulin and monomeric insulin delivered to the surface of lung tissue will be absorbed into the circulatory system. A dry powder or a liquid insulin formulation is delivered to the patient from a mechanical or electronic hand-held, self-contained device.
摘要:
The need for the delivery of insulin by injection can be reduced or eliminated by delivering an aerosolized monomeric insulin formulation. Repeatability of dosing and more particularly the repeatability of the blood concentration versus time profile is improved relative to regular insulin. The blood concentration versus time profile is substantially unaffected by specific aspects of the patient's breathing maneuver at delivery. Further, the rate at which blood glucose is lowered is increased by the use of monomeric insulin. Particles of insulin and in particular monomeric insulin delivered to the surface of lung tissue will be absorbed into the circulatory system. The monomeric insulin may be a dry powder but is preferably in a liquid formulation delivered to the patient from a hand-held, self-contained device which automatically releases an aerosolized burst of formulation. The device includes a sensor which is preferably electronic which measures inspiratory flow and volume which measurement can be used to control the point of drug release.
摘要:
The need for the delivery of insulin by injection can be reduced or eliminated by a method whereby an aerosolized insulin formulation is delivered to a patient's lungs and the rate at which the insulin is absorbed into the blood is increased by the use of monomeric insulin and/or an inhale-exhale breathing maneuver. Particles of insulin and in particular monomeric insulin delivered to the surface of lung tissue will be absorbed into the circulatory system. The rate of absorption is enhanced by the monomeric form of insulin and by instructing the patient to inhale maximally and thereafter exhale maximally. This maneuver causes a spike in the rate at which insulin enters the circulatory system thereby increasing the rate at which glucose is removed from the circulatory system. The insulin or insulin analog may be a dry powder but is preferably in a liquid formulation delivered to the patient from a hand-held, self-contained device which automatically releases an aerosolized burst of formulation. The device includes a sensor which is preferably electronic which measures inspiratory flow and volume which measurement can be used to control the point of drug release. The sensor can also assist the patient in the inhale-exhale maneuver.
摘要:
Dosages of inhaled insulin are controlled within a narrow range by controlling the total volume of air inhaled by a patient. By repeatedly delivering aerosolized insulin with the same total inhaled volume of air, the amount of insulin delivered to the patient each time is consistent. A device for delivering insulin by inhalation is disclosed which device comprises a means for measuring inhaled volume and for halting inhalation at a pre-determined point. The device also comprises an adjustable means for applying various amounts of force to a container of formulation to expel different amounts of drug from the container based on the force applied.
摘要:
The need for the delivery of insulin by injection can be reduced or eliminated by a method whereby an aerosolized insulin formulation is delivered to a patient's lungs and the rate at which the insulin is absorbed into the blood is increased by the use of an inhale-exhale breathing maneuver. Particles of insulin delivered to the surface of lung tissue will be absorbed into the circulatory system. The rate of absorption is enhanced by instructing the patient to inhale maximally and thereafter exhale maximally. The insulin is delivered to the patient from a hand-held, self-contained device which automatically releases an aerosolized burst of formulation. The device includes a sensor which is preferably electronic which measures inspiratory flow and volume which measurement can be used to control the point of drug release. The sensor can also assist the patient in the inhale-exhale maneuver.