摘要:
A sintered porous material with stronger corrosion resistance comprising three elements Ti, Si and C which constitute at least 90% of the weight of the porous material, wherein the porous material has 30-60% porosity, 0.5-50 μm average pore size, and at least 23 MPa tensile strength, wherein the porous material of 5 mm thickness under 0.05 MPa pressure has a pure water filtration flux of at least 1 t/m2·h, and a weight loss rate of no more than 1.5% after having been immersed in a 5 wt % hydrochloric acid solution at room temperature for 48 days.
摘要:
A method, apparatus and special phosphorus recovery device for recovering yellow phosphorus from an electric furnace phosphorus-producing furnace gas without the use of a spray cooling mode during the condensation of the electric furnace phosphorus-producing furnace gas. The method comprises the steps: 1) dedusting and purifying the electric furnace phosphorus-producing furnace gas by using a dry-type dedusting system, so that the solid content of the electric furnace phosphorus-producing furnace gas in less than or equal to 10-50 mg/m3; 2) conveying the purified furnace gas to a phosphorus recovery device, the phosphorus recovery device being provided with a heat exchange chamber formed by a shell and a recuperator arranged inside the heat exchange chamber; 3) feeding into an internal flow path of the recuperator a low-temperature medium, which conducts non-mixed heat transfer with the furnace gas under the isolation of the recuperator, so that the yellow phosphorus is condensed, separated out, and then vastly attached to the surface of the recuperator, and the tail gas arising from heat exchange is discharged out of the phosphorus recovery device; and 4) feeding a high-temperature medium for replacing the low-temperature medium into the internal flow path of the recuperator.
摘要:
Disclosed are a sintered Fe—Al based alloy porous material with high temperature oxidation resistance and a filter element using same. The porous material has a porosity of 30-60% and an average pore diameter of 0.5-50 μm, and has that: a) it mainly consists of three elements of Fe, Al and Cr, and the total weight of these three elements accounts for at least 90% of the weight of the porous material, wherein the weight of Fe is 60-85% of the total weight of Fe and Al, and the weight of Cr is 10-30% of the total weight of Fe, Al and Cr; b) the Cr in the porous material mainly presents in the form of a chromium compound of a Fe—Al based compound, or mainly presents in the form of a chromium compound of the Fe—Al based compound and FeCr, and is almost uniformly dispersed in the porous material; and c) it has a tensile strength ≧45 MPa, an air flux ≧80 m3/m2·KPa·h for the sintered Fe—Al based alloy porous material with a thickness ≦5 mm, a weight loss rate of at most 0.5% after being immersed into a NaOH solution with a mass fraction of 10% at room temperature for 15 days, and a material weight gain rate of at most 0.25% after being kept at 1000° C. in air for 90 hours.
摘要:
A flexible porous metal foil sheet made of a metal porous material which use a solid solution alloy, a metal element of a face-centered cubic structure or a metal element of a body-centered cubic structure as the matrix phase, wherein the thickness of the sheet is greater than 200 μm and less than or equal to 1500 μm, the average aperture is 0.05˜100 μm, and the porosity is 15%˜70%. The method for making the flexible porous metal foil comprises: (1) making viscous suspension or muddy paste of raw material powder that will form the metal porous material using a dispersing agent and a binding agent; (2) injecting the suspension or paste into a mold for making membrane, and drying the suspension or paste to form a homogeneous membrane; (3) pressing the membrane to improve the stacking density of the powder particles; and (4) sintering the pressed membrane to obtain the flexible porous metal foil. The flexible porous metal foil has more uniform aperture distribution, and better flatness of the foil.
摘要:
Disclosed is a sintered porous material with stronger corrosion resistance and a filter element using same. The sintered porous material of the present application has following features: a) it mainly consists of three elements of Ti, Si and C, and the total weight of the three elements accounts for at least 90% of the weight of the sintered porous material, wherein Ti is 60-75% of the total weight of Ti, Si and C, and Si is 10-20% of the total weight of Ti, Si and C; b) C in the sintered porous material is mainly present in the form of the Ti3SiC2 ternary MAX phase compound, and is almost uniformly dispersed in the porous material; c) the porous material has porosity of 30-60%, average pore size of 0.5-50 μm, tensile strength of at least 23 MPa, pure water filtration flux of 1 t/m2·h at least measured under a filtration pressure difference of 0.05 MPa with a thickness of 5 mm at most for the sintered porous material, and a weight loss rate of at most 1.5% after being immersed into a 5 wt. % chlorhydric acid solution at room temperature for 48 days. The sintered porous material of the present invention has the excellent corrosion resistance property.
摘要:
Disclosed are a powder sintered porous metal with better comprehensive properties, especially with good corrosion resistance to hydrofluoric acid, and a filter element using same. The powder sintered porous metal of the present invention has a porosity of 25-60%, an average pore diameter of 0.5-50 μm and a weight loss rate of at most 1% after being immersed into a hydrofluoric acid solution with a mass fraction of 5% at room temperature for 20 days; and the powder sintered metal porous body consists of Cu accounting for 23-40 wt %, Si accounting for 0-5% and the balance of Ni, based on the weight of the powder sintered metal porous body. The powder sintered porous metal of the present invention has good mechanical properties and machinability, and excellent corrosion resistance in acid mediums, especially in hydrofluoric acid mediums. In particular surprisingly, when Cu and Ni are introduced into the powder sintered porous metal by Cu element powders and Ni element powders doped in the raw material powders, the powder sintered porous metal has significantly improved permeability and backflushing regeneration property.
摘要:
Disclosed are a powder sintered porous metal with better comprehensive properties, especially with good corrosion resistance to hydrofluoric acid, and a filter element using same. The powder sintered porous metal of the present invention has a porosity of 25-60%, an average pore diameter of 0.5-50 μm and a weight loss rate of at most 1% after being immersed into a hydrofluoric acid solution with a mass fraction of 5% at room temperature for 20 days; and the powder sintered metal porous body consists of Cu accounting for 23-40 wt %, Si accounting for 0-5% and the balance of Ni, based on the weight of the powder sintered metal porous body. The powder sintered porous metal of the present invention has good mechanical properties and machinability, and excellent corrosion resistance in acid mediums, especially in hydrofluoric acid mediums. In particular surprisingly, when Cu and Ni are introduced into the powder sintered porous metal by Cu element powders and Ni element powders doped in the raw material powders, the powder sintered porous metal has significantly improved permeability and backflushing regeneration property.
摘要:
A piece of flexible porous metal foil is a sheet made of porous metal material using solid solution alloy, face-centered cubic metal simple substance or body-centered cubic metal simple substance as matrix phase. The thickness of the sheet is 5 to 200 micrometers, the average aperture thereof is 0.05 to 100 micrometers, the porosity thereof is 15-70%, and the sheet is made by sintering a homogeneous film. The preparation method for the flexible porous metal foil comprises: (1) preparing thick turbid liquid with raw material powder forming the metal porous material by using dispersing agent and binding agent; (2) injecting the turbid liquid into a mold cavity of a film manufacturing fixture, and drying the turbid liquid to form a piece of homogeneous film; (3) putting the film into a sintering manufacturing fixture matching with the film in shape, then sintering the film, and taking the film out after sintering and obtaining the flexible porous metal foil. The flexible porous metal foil made by the above method can be used in many fields, and have ideal performance in flexible and chemical stability.
摘要:
Disclosed are a sintered Fe—Al based alloy porous material with high temperature oxidation resistance and a filter element using same. The porous material has a porosity of 30-60% and an average pore diameter of 0.5-50 μm, and has that: a) it mainly consists of three elements of Fe, Al and Cr, and the total weight of these three elements accounts for at least 90% of the weight of the porous material, wherein the weight of Fe is 60-85% of the total weight of Fe and Al, and the weight of Cr is 10-30% of the total weight of Fe, Al and Cr; b) the Cr in the porous material mainly presents in the form of a chromium compound of a Fe—Al based compound, or mainly presents in the form of a chromium compound of the Fe—Al based compound and FeCr, and is almost uniformly dispersed in the porous material; and c) it has a tensile strength≥45 MPa, an air flux≥80 m3/m2·KPa·h for the sintered Fe—Al based alloy porous material with a thickness≤5 mm, a weight loss rate of at most 0.5% after being immersed into a NaOH solution with a mass fraction of 10% at room temperature for 15 days, and a material weight gain rate of at most 0.25% after being kept at 1000° C. in air for 90 hours.
摘要:
A piece of flexible porous metal foil is a sheet made of porous metal material using solid solution alloy, face-centered cubic metal simple substance or body-centered cubic metal simple substance as matrix phase. The thickness of the sheet is 5 to 200 micrometers, the average aperture thereof is 0.05 to 100 micrometers, the porosity thereof is 15-70%, and the sheet is made by sintering a homogeneous film. The preparation method for the flexible porous metal foil comprises: (1) preparing thick turbid liquid with raw material powder forming the metal porous material by using dispersing agent and binding agent; (2) injecting the turbid liquid into a mold cavity of a film manufacturing fixture, and drying the turbid liquid to form a piece of homogeneous film; (3) putting the film into a sintering manufacturing fixture matching with the film in shape, then sintering the film, and taking the film out after sintering and obtaining the flexible porous metal foil. The flexible porous metal foil made by the above method can be used in many fields, and have ideal performance in flexible and chemical stability.