Abstract:
A method and an apparatus for identifying a state of a user of a social network. The identification method includes acquiring a user-event similarity of a user regarding a new event; identifying whether the user is a silent user or a non-activated user according to the user-event similarity; and determining whether the silent user or the non-activated user on the social network is finally in an activated state or a non-activated state. In the foregoing manner, a novel user state model of a social network is designed in the present disclosure, the model includes an activated state, a non-activated state and an unstable silent state, and a final state of a user is inferred precisely under full and comprehensive consideration of factors that may affect the state of the user, such that the state of the user can be accurately and precisely monitored.
Abstract:
A method and an apparatus for identifying a state of a user of a social network. The identification method includes acquiring a user-event similarity of a user regarding a new event; identifying whether the user is a silent user or a non-activated user according to the user-event similarity; and determining whether the silent user or the non-activated user on the social network is finally in an activated state or a non-activated state. In the foregoing manner, a novel user state model of a social network is designed in the present disclosure, the model includes an activated state, a non-activated state and an unstable silent state, and a final state of a user is inferred precisely under full and comprehensive consideration of factors that may affect the state of the user, such that the state of the user can be accurately and precisely monitored.
Abstract:
A method for data filtering includes segmenting a to-be-detected vector to obtain k to-be-detected sub-vectors, respectively performing an inner product operation on the k to-be-detected sub-vectors and corresponding detection vectors among preset k detection vectors to obtain k first operation results, determining a first operation result whose value is the maximum among the k first operation results and obtaining an identifier of a detection vector corresponding to the first operation result, where a detection vector is in a one-to-one correspondence to an identifier, and mapping the to-be-detected vector to a preset data filter according to the obtained identifier of the detection vector corresponding to the first operation result whose value is the maximum, and determining, using the data filter, whether to filter out the to-be-detected vector.
Abstract:
A method for data filtering includes segmenting a to-be-detected vector to obtain k to-be-detected sub-vectors, respectively performing an inner product operation on the k to-be-detected sub-vectors and corresponding detection vectors among preset k detection vectors to obtain k first operation results, determining a first operation result whose value is the maximum among the k first operation results and obtaining an identifier of a detection vector corresponding to the first operation result, where a detection vector is in a one-to-one correspondence to an identifier, and mapping the to-be-detected vector to a preset data filter according to the obtained identifier of the detection vector corresponding to the first operation result whose value is the maximum, and determining, using the data filter, whether to filter out the to-be-detected vector.