Abstract:
A configuration apparatus includes a processor and a transmission interface, where the processor is configured to: configure at least one virtual function (VF); configure a resource pool corresponding to each VF and running time information of each VF, where the resource pool includes at least one hardware computing unit; and send configuration information through the transmission interface, where the configuration information indicates a resource pool corresponding to the at least one VF and running time information of the at least one VF.
Abstract:
Embodiments of the present invention provide a method and an apparatus for demodulating a physical random access channel signal. The method includes: acquiring a down-sampling sequence of a PRACH demodulation signal, and acquiring a power sequence of the down-sampling sequence; determining a position of a sounding reference signal sampling point in the down-sampling sequence according to the power sequence; and eliminating the sounding reference signal sampling point in the down-sampling sequence according to the position of the sounding reference signal sampling point, so as to perform PRACH coherent detection on a down-sampling sequence obtained after the sounding reference signal sampling point is eliminated. In the method and the apparatus for demodulating a physical random access channel signal in the embodiments of the present invention, interference from a sounding reference signal can be restrained and false alarms in PRACH detection can be reduced.
Abstract:
A pressure detection structure and an electronic device are provided that improve sensitivity and accuracy of pressure detection. The pressure detection structure includes: N piezo-resistors connected at the first dielectric layer to form a Wheatstone bridge, where an opening of a first cavity is provided on the first surface of the substrate. The two ends, in a first direction, of the vertical projection of a first piezo-resistor among the N piezo-resistors on a contact surface between the N piezo-resistors and the first dielectric layer are located respectively on the two sides, in the first direction, of the vertical projection of the first cavity on the contact surface. The long side of a second piezo-resistor among the N piezo-resistors is perpendicular to the first direction, and the vertical projection of the second piezo-resistor on the contact surface does not overlap with the vertical projection of the first cavity.
Abstract:
System and apparatus embodiments are provided for high capacity wireless communication. In an embodiment, a system for high capacity wireless communication includes a plurality of small radio unit modules (SRUMs) and a single central module (CM) configured to connect to the SRUMS over a high speed transport layer (TL), wherein the SRUMs each comprise a SRUM radio frequency (RF) element and an antenna, wherein the CM comprises a digital signal processor (DSP), an analog-to-digital (A/D) converter, a plurality of digital-to-analog (D/A) converters, and a plurality of CM RF elements, wherein each of the plurality of SRUMs is uniquely associated with a CM RF element, and a D/A converter thereby forming a radio unit (RU) that is configured to operate independently of other RUs.
Abstract:
Embodiments of the present invention provide a method and an apparatus for demodulating a physical random access channel signal. The method includes: acquiring a down-sampling sequence of a PRACH demodulation signal, and acquiring a power sequence of the down-sampling sequence; determining a position of a sounding reference signal sampling point in the down-sampling sequence according to the power sequence; and eliminating the sounding reference signal sampling point in the down-sampling sequence according to the position of the sounding reference signal sampling point, so as to perform PRACH coherent detection on a down-sampling sequence obtained after the sounding reference signal sampling point is eliminated. In the method and the apparatus for demodulating a physical random access channel signal in the embodiments of the present invention, interference from a sounding reference signal can be restrained and false alarms in PRACH detection can be reduced.