Abstract:
A device and a method are provided for producing a sound field are disclosed. The device comprises a plurality of loudspeakers arranged at a plurality of locations within a plane and a processing circuitry configured to drive the plurality of loudspeakers. A first subset of the plurality of loudspeakers defines a first rhombus within the plane and a second subset of the plurality of loudspeakers defines a second rhombus within the plane. The first rhombus is oriented substantially perpendicular to the second rhombus. Further subsets of the plurality of loudspeakers may define further rhombic sub-arrays. The audio device may be implemented as a soundbar or a sound panel, which provides a richer sound experience.
Abstract:
Example audio signal processing apparatuses and methods for processing an input audio signal into an output audio signal are disclosed. An example audio signal processing apparatus comprises a decomposer configured to decompose the input audio signal into a direct audio signal and a diffuse audio signal, a modifier configured to modify the direct audio signal in order to obtain a modified direct audio signal, wherein the modifier comprises a bandwidth extender configured to extend an upper cutoff frequency of a frequency range of the direct audio signal, and a combiner configured to combine the modified direct audio signal with the diffuse audio signal to obtain the output audio signal.
Abstract:
An audio signal processing device for generating a plurality of output signals for a plurality of loudspeakers from an input audio signal comprises a driving function determining unit adapted to determined driving functions of a plurality of loudspeakers for generating a virtual left binaural signal source and a virtual right binaural signal source based upon a position and a directivity of the virtual left binaural signal source, a position and a directivity of the virtual right binaural signal source and positions of the plurality of loudspeakers. Moreover, it comprises a filtering unit adapted to filter a left binaural signal and a right binaural signal using the driving functions of the plurality of loudspeakers resulting in the plurality of output signals. The left binaural signal and the right binaural signal constitute the input audio signal or are derived there from.
Abstract:
A method for acoustic scene playback is described, which comprises: providing recording data comprising microphone signals of microphone setups positioned within an acoustic scene and microphone metadata of the microphone setups, each of the microphone setups has a recording spot which is a center position of the respective microphone setup; specifying a virtual listening position within the acoustic scene; assigning each microphone setup Virtual Loudspeaker Objects, VLOs, wherein each VLO is an abstract sound output object within a virtual free field; generating an encoded data stream based on the recording data, the virtual listening position and VLO parameters of the VLOs assigned to the microphone setups; and decoding the encoded data stream based on a playback setup, thereby generating a decoded data stream; and feeding the decoded data stream to a rendering device, thereby driving the rendering device to reproduce sound of the acoustic scene at the virtual listening position.
Abstract:
A signal generator has a filter bank that provides weighted versions of audio signals to speakers. The weights were derived by identifying a first constraint that limits a weight that can be applied to an audio signal to be provided to a first speaker. A characteristic of a second speaker that affects how a user will perceive audio signals output by that speaker relative to audio signals output by the first speaker was also determined. A second constraint was determined based on the determined characteristic and the first constraint. The weights were then determined so as to minimize a difference between an actual balance of each signal that is expected to be heard by a user and a target balance. The signal generator can achieve sweet spot correction and sound stage widening simultaneously. It also achieves a balanced sound stage, particularly when the speakers are asymmetric.
Abstract:
A sound signal processing apparatus including a plurality of microphones, where each microphone is configured to receive the sound signal from the target source, a processor configured to estimate a first power measure on the basis of the sound signal from the target source received by a first microphone of the microphones and a second power measure on the basis of the sound signal from the target source received by at least a second microphone of the microphones, which is located more distant from the target source than the first microphone, and the processor is further configured to determine a gain factor on the basis of a ratio between the second power measure and the first power measure, and an amplifier configured to apply the gain factor to the sound signal from the target source received by the first microphone.
Abstract:
The disclosure relates to an audio signal processing apparatus for modifying a stereo image of a stereo signal. The apparatus includes a panning index modifier configured to apply a mapping function to at least all panning indexes of stereo signal time-frequency segments that are within a frequency bandwidth, a first panning gain determiner configured to determine modified panning gains for time-frequency signal segments of the first and second audio signal based on the modified panning indexes, and a re-panner configured to re-pan the stereo signal according to ratios between the modified panning gains and panning gains of the first and second audio signal that correspond to the modified panning gains in time and frequency.
Abstract:
An apparatus for estimating an overall mixing time, where the apparatus comprises a processing element configured to determine differences between energy profiles of a first room impulse response of the first pair of room impulse responses and a second room impulse response of the first pair of room impulse responses at a plurality of different sample times of the first pair of room impulse responses, set a sample time of the plurality of sample times as a mixing time for the first pair of room impulse responses at which the difference between the energy profiles of the first room impulse response and the second room impulse response of the first pair of room impulse responses is equal to or below a threshold value, and determine the overall mixing time based on the mixing time for the first pair of room impulse responses.
Abstract:
The invention relates to an audio signal processing apparatus (100) for processing an input earpiece audio signal (x) upon the basis of a microphone audio signal (y), the audio signal processing apparatus (100) comprising a voice activity detector (101) being configured to determine a voice activity indicator signal (xvad) upon the basis of the input earpiece audio signal (x), a noise magnitude determiner (103) being configured to determine a microphone noise magnitude indicator signal (wy) upon the basis of the microphone audio signal (y), a gain factor determiner (105) being configured to determine a gain factor signal (ΔG) upon the basis of the voice activity indicator signal (xvad) and the microphone noise magnitude indicator signal (wy), and a weighter (107) being configured to weight the input earpiece audio signal (x) by the gain factor signal (ΔG) to obtain an output earpiece audio signal.
Abstract:
A microphone arrangement and a method using the microphone arrangement for recording surround sound in a mobile device, where the microphone arrangement comprises a first and a second microphone and arranged at a first distance to each other and configured to obtain a stereo signal, and comprises a third microphone configured to obtain a steering signal together with at least one of the first and second microphone or with a fourth microphone. The microphone arrangement also comprises a processor configured to separate the stereo signal into a front stereo signal and a back stereo signal based on the steering signal.