Abstract:
A method for determining a configuration knob of a database is disclosed, and may be applied to a database management system. In this method, vectorization coding is performed on a query statement, to obtain a target feature vector of the query statement, and then a configuration knob set for determining the database is determined based on two aspects of double-state information: the target feature vector and current status information of the database (101). The configuration knob set is used to execute N query statements. The configuration knob of the database (101) may be dynamically determined based on the query statement and the current status information of the database (101), so that good performance of the database (101) in a case of different workload requirements, for example, performance in aspects of a delay and a throughput, can be ensured.
Abstract:
The present invention discloses a passive optical network communications method, reporting, by an optical network unit, ONU, a calibration record of the ONU, where the calibration record includes an ID of a calibrated wavelength channel; sending a first message to the ONU when the OLT determines, according to the calibration record, that a target wavelength channel ID corresponding to a target wavelength channel to which the ONU needs to switch is not in the calibration record, where the first message includes a forced wavelength switching flag; and instructing the ONU to switch to the calibrated target wavelength channel. In this way, the ONU can implement wavelength switching quickly after calibrating a new wavelength channel so as to perform data communication over the calibrated new wavelength channel.
Abstract:
The present invention relates to the field of communications technologies, and discloses a beam tracking method, apparatus, and system, so as to ensure rapid discovery and to switch from an optimal link to a backup link in time, or switch from a backup link to an optimal link, thereby effectively improving a throughput of a system link. The beam tracking method includes: transmitting, by a beam tracking initiator, a beam tracking request to a beam tracking responder; receiving, by the beam tracking initiator, an enhanced beam tracking training auxiliary sequence transmitted, according to the enhanced beam tracking request, by the beam tracking responder; and when it is determined according to a reception detection result of the enhanced beam tracking training auxiliary sequence that it is necessary to switch to a backup beam link, transmitting, by the beam tracking initiator, first link switching information to the beam tracking responder.
Abstract:
Embodiments of the present invention provide an optical network unit (ONU) registration method, an apparatus, and a system. The ONU registration method includes: scanning, by an ONU port, a downstream wavelength channel, where the ONU port is one of a plurality of ONU ports on an ONU; receiving, by the ONU port, a discovery grant message from an optical line terminal (OLT), where the discovery grant message includes a channel identifier of a downstream wavelength channel on which the discovery grant message is being transmitted; sending, by the ONU port, a register request message to the OLT, where the register request message includes a port number of the ONU port; and receiving, by the ONU port, a register message from the OLT, where the register message includes the port number of the ONU port and an ONU logical identifier allocated by the OLT to the ONU port.
Abstract:
The invention discloses a communication method includes: receiving, by the ONU by using the first port or the second port, a wavelength switching request message delivered by the OLT, where the wavelength switching request message carries second wavelength channel information and port information that is of the second port; switching, by the ONU, an operating wavelength channel of an optical module connected to the second port from a first wavelength channel to a second wavelength channel corresponding to the second wavelength channel information; and sending, by the ONU, a wavelength switching complete message to the OLT by using the first port. According to the communication method provided in embodiments of the present invention, quick wavelength switching is performed based on the second port, so that a service is not interrupted in a wavelength switching process, and user experience is better.
Abstract:
This application provides a wavelength negotiation method of a multi-wavelength passive optical network, including: receiving a wavelength status table that is broadcast by an OLT over each downstream wavelength channel of a multi-wavelength PON system, where the wavelength status table is used to indicate information about available wavelengths of the multi-wavelength PON system and statistic information of registered ONUs of a corresponding wavelength channel; selecting an upstream transmit wavelength and a downstream receive wavelength according to the wavelength status table; and reporting information about the upstream transmit wavelength and information about the downstream receive wavelength to the OLT so that the OLT refreshes the wavelength status table. This application also provides a wavelength negotiation apparatus of the multi-wavelength passive optical network and a multi-wavelength passive optical network system.
Abstract:
The present application provides a wavelength configuration method for a multi-wavelength passive optical network, which includes: scanning, by an ONU, a downstream receiving wavelength, and receiving, downstream wavelength information of each downstream wavelength channel that is broadcast by an OLT separately through each downstream wavelength channel of a multi-wavelength PON system; establishing, by the ONU, a downstream receiving wavelength mapping table, where an entry of the downstream receiving wavelength mapping table includes downstream receiving wavelength information, drive current information of a downstream optical receiver and receiving optical physical parameter information of the ONU; selecting, by the ONU, one downstream wavelength from the downstream wavelength information broadcast by the OLT, and setting, according to the drive current information of the downstream optical receiver recorded in a related entry of the downstream receiving wavelength mapping table, an operating wavelength of the downstream optical receiver to the selected downstream wavelength.
Abstract:
An optical line terminal or an optical network unit first obtains link communication quality of both a first physical link and a second physical link between the optical line terminal and the optical network unit, performs FEC encoding on the first physical link by using a first FEC code, and performs FEC encoding on the second physical link by using a second FEC code. The link communication quality of the first physical link is higher than that of the second physical link, and encoding performance of the second FEC code is higher than that of the first FEC code. Based on the foregoing technical solutions, a FEC encoding type may be selected flexibly based on communication quality of different physical links. FEC encoding having relatively low FEC encoding performance is used for a link in a good state, to reduce overheads, bandwidth, and energy consumption.
Abstract:
The present invention discloses a passive optical network communications method, apparatus and system. The method includes: receiving, by an optical network unit, a first message sent by an optical line terminal, where the first message carries backup wavelength channel ID information; switching, by the optical network unit, following the optical network unit detects a fault, an operating wavelength channel of the optical network unit to a backup wavelength channel identified by the backup wavelength channel ID information; and performing, by the optical network unit, data communication over the switched-to backup wavelength channel. In this way, fast protection switching of a passive optical network system is implemented and reliability of the system is improved.
Abstract:
Embodiments of the present invention provide a downstream data frame transmitting method. The method includes: generating, by an OLT, a downstream data frame, where the downstream data frame includes a frame header and a payload, the frame header includes a physical synchronization sequence (Psync) field, and the Psync field is used to identify the downstream data frame, where when a value of the Psync field is a first value, the Psync field is further used to indicate that payload data is protected by forward error correction (FEC); or when a value of the Psync field is a second value, the Psync field is further used to indicate that payload data is not protected by FEC; and sending, by the OLT, the downstream data frame. The embodiments of the present invention can reduce a bit error rate of a FEC indication status and improve reliability of the FEC indication status.