Abstract:
A speech recognition system for continuous Mandarin Chinese speech comprises a microphone, an A/D converter, a syllable recognition system, an integrated tone classifier, and a confidence score augmentor. The syllable recognition system generates N-best theories with initial confidence scores. The integrated tone classifier has a pitch estimator to estimate the pitch of the input once and a long-term tone analyzer to segment the estimated pitch according to the syllables of each of the N-best theories. The long-term tone analyzer performs long-term tonal analysis on the segmented, estimated pitch and generates a long-term tonal confidence signal. The confidence score augmentor receives the initial confidence scores and the long-term tonal confidence signals, modifies each initial confidence score according to the corresponding long-term tonal confidence signal, re-ranks the N-best theories according to the augmented confidence scores, and outputs the N-best theories.
Abstract:
A pattern recognition system which continuously adapts reference patterns to more effectively recognize input data from a given source. The input data is converted to a set or series of observed vectors and is compared to a set of Markov Models. The closest matching Model is determined and is recognized as being the input data. Reference vectors which are associated with the selected Model are compared to the observed vectors and updated ("adapted") to better represent or match the observed vectors. This updating method retains the value of these observed vectors in a set of accumulation vectors in order to base future adaptations on a broader data set. When updating, the system also may factor in the values corresponding to neighboring reference vectors that are acoustically similar if the data set from the single reference vector is insufficient for an accurate calculation. Every reference vector is updated after every input; thus reference vectors neighboring an updated reference vector may also be updated. The updated reference vectors are then stored by the computer system for use in recognizing subsequent inputs.
Abstract:
A method of constructing a language model for a phrase-based search in a speech recognition system and an apparatus for constructing and/or searching through the language model. The method includes the step of separating a plurality of phrases into a plurality of words in a prefix word, body word, and suffix word structure. Each of the phrases has a body word and optionally a prefix word and a suffix word. The words are grouped into a plurality of prefix word classes, a plurality of body word classes, and a plurality of suffix word classes in accordance with a set of predetermined linguistic rules. Each of the respective prefix, body, and suffix word classes includes a number of prefix words of same category, a number of body words of same category, and a number of suffix words of same category, respectively. The prefix, body, and suffix word classes are then interconnected together according to the predetermined linguistic rules. A method of organizing a phrase search based on the above-described prefix/body/suffix language model is also described. The words in each of the prefix, body, and suffix classes are organized into a lexical tree structure. A phrase start lexical tree structure is then created for the words of all the prefix classes and the body classes having a word which can start one of the plurality of phrases while still maintaining connections of these prefix and body classes within the language model.
Abstract:
A method for reducing recognition errors in a speech recognition system that has a user interface, which instructs the user to invoke a new word acquisition module upon a predetermined condition, and that improves the recognition accuracy for poorly recognized words. The user interface of the present invention suggests to a user which unrecognized words may be new words that should be added to the recognition program lexicon. The user interface advises the user to enter words into a new word lexicon that fails to present themselves in an alternative word list for two consecutive tries. A method to improve the recognition accuracy for poorly recognized words via language model adaptation is also provided by the present invention. The present invention increases the unigram probability of an unrecognized word in proportion to the score difference between the unrecognized word and the top one word to guarantee recognition of the same word in a subsequent try. In the event that the score of unrecognized word is unknown (i.e., not in the alternative word list), the present invention increases the unigram probability of the unrecognized word in proportion to the difference between the top one word score and the smallest score in the alternative list.
Abstract:
A classifier is built to rank documents of different languages found in a query based at least in part on similarity to other documents and the relevance of those other documents to the query. A joint ranking model, e.g., based upon a Boltzmann machine, is used to represent the content similarity among documents, and to help determine joint relevance probability for a set of documents. The relevant documents of one language are thus leveraged to improve the relevance estimation for documents of different languages. In one aspect, a hidden layer of units (neurons) represents clusters (corresponding to relevant topics) among the retrieved documents, with an output layer representing the relevant documents and their features, and edges representing a relationship between clusters and documents.
Abstract:
A sentence is accessed and at least one query is generated based on the sentence. At least one query can be compared to text within a collection of documents, for example using a web search engine. Collocation errors in the sentence can be detected and/or corrected based on the comparison of the at least one query and the text within the collection of documents.
Abstract:
Collocation errors can be automatically proofed using local and network-based corpora, including the Web. For example, according to one illustrative method, one or more collocations from a text sample are compared with a corpus such as the content of the Web. The collocations are identified for whether they are disfavored in the corpus. Indications are provided via an output device of whether the collocations are disfavored in the corpus. Additional steps may then be taken such as searching for and providing potentially proper word collocations via a user output.
Abstract:
A method and apparatus for compressing query logs is provided. Multiple levels of user-specifiable compression include character-based compression, token-based compression, and subsumption. An efficient method for performing subsumption is also provided. The compressed query logs are then used to train a statistical process such as a help function for a computer operating system.
Abstract:
A text generator automatically generating a text document based on the actions of an author on a user interface. To generate the text document the author activates a recording component. The recording component records the author's actions on the user interface. Based on the recorded actions, a text generation component searches a text database and identifies an entry that matches the author's recorded actions. This text is then combined to form a text document, which provides instruction or other information to a user. During the process of generating the text document, the text can be edited using an editor as desired, such as to enhance the comprehensibility of the document.
Abstract:
Tone-sensitive acoustic models are generated by first generating acoustic vectors which represent the input data. The input data is separated into multiple frames and an acoustic vector is generated for each frame which represents the input data over its corresponding frame. A tone-sensitive parameter is then generated for each of the frames which indicates the tone of the input data at its corresponding frame. Tone-sensitive parameters are generated in accordance with two embodiments. First, a pitch detector may be used to calculate a pitch for each of the frames. If a pitch cannot be detected for a particular frame, then a pitch is created for that frame based on the pitch values of surrounding frames. Second, the cross covariance between the autocorrelation coefficients for each frame and its successive frame may be generated and used as the tone-sensitive parameter. Feature vectors are then created for each frame by appending the tone-sensitive parameter for a frame to the acoustic vector for the same frame. Then, using these feature vectors, acoustic models are created which represent the input data.