摘要:
A language input architecture converts input strings of phonetic text to an output string of language text. The language input architecture has a search engine, one or more typing models, a language model, and one or more lexicons for different languages. The typing model is configured to generate a list of probable typing candidates that may be substituted for the input string based on probabilities of how likely each of the candidate strings was incorrectly entered as the input string. The language model provides probable conversion strings for each of the typing candidates based on probabilities of how likely a probable conversion output string represents the candidate string. The search engine combines the probabilities of the typing and language models to find the most probable conversion string that represents a converted form of the input string.
摘要:
A search engine architecture is designed to handle a full range of user queries, from complex sentence-based queries to simple keyword searches. The search engine architecture includes a natural language parser that parses a user query and extracts syntactic and semantic information. The parser is robust in the sense that it not only returns fully-parsed results (e.g., a parse tree), but is also capable of returning partially-parsed fragments in those cases where more accurate or descriptive information in the user query is unavailable. A question matcher is employed to match the fully-parsed output and the partially-parsed fragments to a set of frequently asked questions (FAQs) stored in a database. The question matcher then correlates the questions with a group of possible answers arranged in standard templates that represent possible solutions to the user query. The search engine architecture also has a keyword searcher to locate other possible answers by searching on any keywords returned from the parser. The answers returned from the question matcher and the keyword searcher are presented to the user for confirmation as to which answer best represents the user's intentions when entering the initial search query. The search engine architecture logs the queries, the answers returned to the user, and the user's confirmation feedback in a log database. The search engine has a log analyzer to evaluate the log database to glean information that improves performance of the search engine over time by training the parser and the question matcher.
摘要:
A handwriting signal processing front-end method and apparatus for a handwriting training and recognition system which includes non-uniform segmentation and feature extraction in combination with multiple vector quantization. In a training phase, digitized handwriting samples are partitioned into segments of unequal length. Features are extracted from the segments and are grouped to form feature vectors for each segment. Groups of adjacent from feature vectors are then combined to form input frames. Feature-specific vectors are formed by grouping features of the same type from each of the feature vectors within a frame. Multiple vector quantization is then performed on each feature-specific vector to statistically model the distributions of the vectors for each feature by identifying clusters of the vectors and determining the mean locations of the vectors in the clusters. Each mean location is represented by a codebook symbol and this information is stored in a codebook for each feature. These codebooks are then used to train a recognition system. In the testing phase, where the recognition system is to identify handwriting, digitized test handwriting is first processed as in the training phase to generate feature-specific vectors from input frames. Multiple vector quantization is then performed on each feature-specific vector to represent the feature-specific vector using the codebook symbols that were generated for that feature during training. The resulting series of codebook symbols effects a reduced representation of the sampled handwriting data and is used for subsequent handwriting recognition.
摘要:
A language input architecture converts input strings of phonetic text to an output string of language text. The language input architecture has a search engine, one or more typing models, a language model, and one or more lexicons for different languages. The typing model is configured to generate a list of probable typing candidates that may be substituted for the input string based on probabilities of how likely each of the candidate strings was incorrectly entered as the input string. The language model provides probable conversion strings for each of the typing candidates based on probabilities of how likely a probable conversion output string represents the candidate string. The search engine combines the probabilities of the typing and language models to find the most probable conversion string that represents a converted form of the input string.
摘要:
A language input architecture converts input strings of phonetic text (e.g., Chinese Pinyin) to an output string of language text (e.g., Chinese Hanzi) in a manner that minimizes typographical errors and conversion errors that occur during conversion from the phonetic text to the language text. The language input architecture has a search engine, one or more typing models, a language model, and one or more lexicons for different languages. Each typing model is trained on real data, and learns probabilities of typing errors. The typing model is configured to generate a list of probable typing candidates that may be substituted for the input string based on probabilities of how likely each of the candidate strings was incorrectly entered as the input string. The probable typing candidates may be stored in a database. The language model provides probable conversion strings for each of the typing candidates based on probabilities of how likely a probable conversion output string represents the candidate string. The search engine combines the probabilities of the typing and language models to find the most probable conversion string that represents a converted form of the input string. By generating typing candidates and then using the associated conversion strings to replace the input string, the architecture eliminates many common typographical errors. When multiple typing models are employed, the architecture can automatically distinguish among multiple languages without requiring mode switching for entry of the different languages.
摘要:
A language input architecture converts input strings of phonetic text to an output string of language text. The language input architecture has a search engine, one or more typing models, a language model, and one or more lexicons for different languages. The typing model is configured to generate a list of probable typing candidates that may be substituted for the input string based on probabilities of how likely each of the candidate strings was incorrectly entered as the input string. The language model provides probable conversion strings for each of the typing candidates based on probabilities of how likely a probable conversion output string represents the candidate string. The search engine combines the probabilities of the typing and language models to find the most probable conversion string that represents a converted form of the input string.
摘要:
The branching decision for each node in a vector quantization (VQ) binary tree is made by a simple comparison of a pre-selected element of the candidate vector with a stored threshold resulting in a binary decision for reaching the next lower level. Each node has a preassigned element and threshold value. Conventional centroid distance training techniques (such as LBG and k-means) are used to establish code-book indices corresponding to a set of VQ centroids. The set of training vectors are used a second time to select a vector element and threshold value at each node that approximately splits the data evenly. After processing the training vectors through the binary tree using threshold decisions, a histogram is generated for each code-book index that represents the number of times a training vector belonging to a given index set appeared at each index. The final quantization is accomplished by processing and then selecting the nearest centroid belonging to that histogram. Accuracy comparable to that achieved by conventional binary tree VQ is realized but with almost a full magnitude increase in processing speed.
摘要:
A method for the joint optimization of language model performance and size is presented comprising developing a language model from a tuning set of information, segmenting at least a subset of a received textual corpus and calculating a perplexity value for each segment and refining the language model with one or more segments of the received corpus based, at least in part, on the calculated perplexity value for the one or more segments.
摘要:
A language input architecture converts input strings of phonetic text (e.g., Chinese Pinyin) to an output string of language text (e.g., Chinese Hanzi) in a manner that minimizes typographical errors and conversion errors that occur during conversion from the phonetic text to the language text. The language input architecture has a search engine, one or more typing models, a language model, and one or more lexicons for different languages. Each typing model is trained on real data, and learns probabilities of typing errors. The typing model is configured to generate a list of probable typing candidates that may be substituted for the input string based on probabilities of how likely each of the candidate strings was incorrectly entered as the input string.
摘要:
A language input architecture converts input strings of phonetic text to an output string of language text. The language input architecture has a search engine, typing models, a language model, and one or more lexicons for different languages. Each typing model is trained on real data, and learns probabilities of typing errors. The typing model is configured to generate a list of probable typing candidates that may be substituted for the input string based on probabilities of how likely each of the candidate strings was incorrectly entered as the input string. The language model provides probable conversion strings for each of the typing candidates based on probabilities of how likely a probable conversion output string represents the candidate string. The search engine combines the probabilities of the typing and language models to find the most probable conversion string that represents a converted form of the input string.