Abstract:
To reduce the magnetic flux leakage through the gap between magnetic pole teeth of an armature so as to reduce the magnetic attraction force generated between the armature and a needle, an armature unit is provided with two magnetic poles 1 and 2, on the top of which are magnetic pole teeth 11a, 12b, 21b, and 22a protruding toward the opposing magnetic pole, where the magnetic pole teeth of the magnetic pole 1 are arranged at two heights, upper and lower, and the magnetic pole teeth of the opposing magnetic pole 2 are arranged at two heights, upper and lower, so that the magnetic flux flows upward and downward alternately between the upper and lower magnetic pole teeth. The needle 6 equipped with permanent magnets moves relatively in the gap 8 between the upper and lower magnetic pole surfaces of the armature unit.
Abstract:
In order to reduce load supported by a support mechanism for supporting a movable part so as to prevent the movable part from moving in a horizontal direction when stress is generated thereon in the horizontal direction, there is provided a drive unit including a primary side having a magnetic body around which a coil is wound, and a secondary side having a plurality of permanent magnets, the primary side including magnetic poles and step portions provided on the magnetic poles. The width of each step portion is smaller than the width of each permanent magnet.
Abstract:
The conventional linear drive apparatus has the problem that in constructing a linear motor of a multiphase structure by connecting a plurality of armature units, the length of the armature becomes longer in proportion to the number of the phases, thus limiting the locations where the apparatus can be installed. The problem is solved by a linear drive apparatus comprising a plurality of armature units 3 formed by a magnetic material on which a conductor coil 4 is disposed, and an armature comprising an arrangement of the armature units 3. The armature units 3 comprise a plurality of opposing portions having opposing magnetic pole teeth. The magnetic pole teeth of adjacent opposing portions are arranged in an interdigitated manner. A secondary member 6 is disposed between magnetic pole teeth of the opposing portions. The armature units 3 comprise the coil 4 arranged on opposite sides thereof in an alternating manner.
Abstract:
A drive apparatus overcomes the problems of ensuring accurate mounting of a plurality of armature coils relative to a plurality of magnetic pole position detectors, limitations concerning the location for mounting, and the extension of primary-side length. The drive apparatus comprises a primary side including an arrangement of a plurality of armatures each having a core made of a magnetic material with coil windings. It also comprises a secondary side including a permanent magnet movably supported relative to the armatures via a gap. A magnetic pole position detector is disposed between adjacent armatures.
Abstract:
The conventional linear drive apparatus has the problem that in constructing a linear motor of a multiphase structure by connecting a plurality of armature units, the length of the armature becomes longer in proportion to the number of the phases, thus limiting the locations where the apparatus can be installed. The problem is solved by a linear drive apparatus comprising a plurality of armature units 3 formed by a magnetic material on which a conductor coil 4 is disposed, and an armature comprising an arrangement of the armature units 3. The armature units 3 comprise a plurality of opposing portions having opposing magnetic pole teeth. The magnetic pole teeth of adjacent opposing portions are arranged in an interdigitated manner. A secondary member 6 is disposed between magnetic pole teeth of the opposing portions. The armature units 3 comprise the coil 4 arranged on opposite sides thereof in an alternating manner.
Abstract:
A linear motor has an armature; a moving member movable relatively to the armature; first and second magnetic pole tooth trains each having magnetic pole teeth magnetically coupled to one of two magnetic poles of the moving element, the first and second magnetic pole tooth trains being separated from each other in a direction substantially perpendicular to a moving direction of the moving member; and third and fourth magnetic pole tooth trains each having magnetic pole teeth magnetically coupled to the other of the two magnetic poles of the moving element, the third and fourth magnetic pole tooth trains being separated from each other in a direction substantially perpendicular to a moving direction of the moving member and the moving member being arranged between the first and second magnetic pole tooth trains and the third and fourth magnetic pole tooth trains.
Abstract:
Disclosed herewith a compact linear motor provided with a plurality of magnetic pole teeth and used to increase the thrust force by canceling a magnetic attractive force working between the primary member and the secondary member. The linear motor comprises a primary member and a secondary member. The primary member includes cores formed with a magnetic material and an electromagnetic coil wound on the cores while the secondary member supported so as to be capable of moving relatively with respect to the primary member with a gap therebetween. In the linear motor, the coil that is wound commonly on the cores is also disposed between adjacent magnetic pole teeth.
Abstract:
With an electric motor formed according to a prior art, there is a relatively large amount of magnetic flux leaking between an armature and a secondary, resulting in a problem that an electric current is large but a desired output is small. In addition, since a magnetic attraction acts only in one direction between the armature and the secondary, there is a relatively large load on the support structures of the secondary, causing a distortion in the motor structure and some other disadvantages. In order to solve the above problems, the present invention provides an improved electric motor comprising an armature having a core formed by a magnetic material and having a coil wound around the core; and a secondary disposed within the armature with a clearance formed therebetween and supported to be relatively movable with respect to the armature.
Abstract:
To reduce the magnetic flux leakage through the gap between magnetic pole teeth of an armature so as to reduce the magnetic attraction force generated between the armature and a needle, an armature unit is provided with two magnetic poles, on the top of which are magnetic pole teeth protruding toward the opposing magnetic pole, where the magnetic pole teeth of the magnetic pole are arranged at two heights, upper and lower, and the magnetic pole teeth of the opposing magnetic pole are arranged at two heights, upper and lower, so that the magnetic flux flows upward and downward alternately between the upper and lower magnetic pole teeth. The needle equipped with permanent magnets moves relatively in the gap between the upper and lower magnetic pole surfaces of the armature unit.
Abstract:
In a linear motor comprising, a stator, a movable element, and an electromagnetic coil device for magnetizing the movable element or stator, the stator includes at least one pair of magnetic core parts, and at least two pairs of magnetic poles, the magnetic poles of each of the at least two pairs are aligned on an imaginary line perpendicular to the movable direction, magnetic polar directions of the at least two pairs adjacent to each other are opposite to each other, first one of the magnetic poles of each of the at least two pairs faces to a first side surface of the movable element, and second one of the magnetic poles of each of the at least two pairs faces to a second side surface of the movable element opposite to the first side surface in a traverse direction perpendicular to the movable direction.