Abstract:
Methods, devices, apparatuses and systems are disclosed for performing mammography, such as utilizing tomosynthesis in combination with breast biopsy.
Abstract:
Methods, devices, apparatuses and systems are disclosed for performing mammography, such as utilizing tomosynthesis in combination with breast biopsy.
Abstract:
A compression arm device for compressing a breast in an imaging system with a compression paddle. The compression arm device includes a drive for moving the compression paddle towards the breast such that the drive provides a variable resistance during a contact of the compression paddle with the breast.
Abstract:
Systems and methods for breast x-ray tomosynthesis that enhance spatial resolution in the direction in which the breast is flattened for examination. In addition to x-ray data acquisition of 2D projection tomosynthesis images ETp1 over a shorter source trajectory similar to known breast tomosynthesis, supplemental 2D images ETp2 are taken over a longer source trajectory and the two sets of projection images are processed into breast slice images ETr that exhibit enhanced spatial resolution, including in the thickness direction of the breast. Additional features include breast CT of an upright patient's flattened breast, multi-mode tomosynthesis, and shielding the patient from moving equipment.
Abstract:
A specimen radiography system may include a controller and a cabinet. The cabinet may include an x-ray source, an x-ray detector, and a specimen drawer disposed between the x-ray source and the x-ray detector. The specimen drawer may be automatically positionable along a vertical axis between the x-ray source and the x-ray detector.
Abstract:
A compression arm device for compressing a breast in an imaging system with a compression paddle. The compression arm device includes a drive for moving the compression paddle towards the breast such that the drive provides a variable resistance during a contact of the compression paddle with the breast.
Abstract:
Methods, devices, apparatuses and systems are disclosed for performing mammography, such as utilizing tomosynthesis in combination with breast biopsy.
Abstract:
A mammographic imaging system is optimized for use with a single fixed size flat panel digital image receptor. It accommodates compression devices (paddles) of varying sizes, and positions them properly in a field of view of the image receptor. When a compression paddle with size smaller than the field of view of the image receptor is used the compression paddle can be shifted laterally in the direction parallel to the chest wall, so as to facilitate different views of different size breasts, and permit the image receptor to image as much of the desired tissue as possible. An automatic X-ray collimator restricts the X-ray illumination of the breast in accordance with the compression paddle size and location in the field of view. An anti-scatter grid, mounted inside the image receptor enclosure, just below the top cover of the enclosure, can be retracted out of the field of view of the image receptor for use in magnification imaging.
Abstract:
A compression arm device for compressing a breast in an imaging system with a compression paddle. The compression arm device includes a drive for moving the compression paddle towards the breast such that the drive provides a variable resistance during a contact of the compression paddle with the breast.
Abstract:
A method of imaging a breast of a patient using an imaging system includes applying, with a first component of the imaging system, a compressive force to the breast. A second component of the imaging system is positioned in a start position. The imaging system sends a first guidance signal to the patient. An imaging procedure of the breast is performed with the second component of the imaging system. Subsequent to performing the imaging procedure, a second guidance signal is sent to the patient.