摘要:
A martensitic stainless steel capable of developing a tempered martensitic structure, comprising by weight C: 0.005 to 0.05%, Si.ltoreq.0.50%, Mn: 0.1 to 1.0%, P.ltoreq.0.03%, S.ltoreq.0.005%, Mo: 1.0 to 3.0%, Cu: 1.0 to 4.0%, Ni: 5 to 8%, Al.ltoreq.0.06%, Cr and Mo satisfying a requirement represented by the formula Cr+1.6Mo.gtoreq.13; and C, N, Ni, Cu, Cr, and Mo satisfying a requirement represented by the formula Ni(eq): 40C+34N+Ni+0.3Cu-1.1Cr-1.8Mo.gtoreq.-10.5, and optionally at least one member selected from the group consisting of Ti, Zr, Ca, and REM, with the balance consisting essentially of Fe. The present invention provides a martensitic stainless steel having excellent resistance to corrosion by CO.sub.2 and sulfide stress cracking and good hot workability.
摘要:
The present invention provides a line pipe of, e.g., the API standard X60 to X100 class. The line pipe has an excellent deformability, as well as excellent low temperature toughness and high productivity, a steel plate used as the material of the steel pipe. Methods for producing the steel pipe and the steel plate are also provided. In particular, a high-strength steel plate excellent in the deformability has a ferrite phase is dispersed finely, and accounts for 5% to 40% in area percentage in a low temperature transformation structure mainly composed of a bainite phase. For example, most grain sizes of the ferrite phase are smaller than the average grain size of the bainite phase. A high-strength steel pipe excellent in deformability is also provided, in which a large diameter steel pipe is produced through forming the steel plate into a pipe shape. The steel pipe has the above-referenced structure, and satisfies the conditions that YS/TS is 0.95 or less and YS×uEL is 5,000 or more. Methods for producing such steel plate and steel pipe are also provided.
摘要:
The present invention, in a welded joint of steel sheets and a steel pipe body having a tensile strength of 800 MPa or more (over X100 in API Standards), provides: the welded joint of the steel sheets and the steel pipe produced by forming a steel sheet into a cylindrical shape and welding both the ends thereof, both excellent in cold cracking resistance; and methods for producing them. The present invention includes an ultrahigh strength welded joint and an ultrahigh strength welded steel pipe excellent in the cold cracking resistance of a weld metal, characterized in that the amount of non-diffusible hydrogen in the inner side weld metal is 0.01 ppm or more. It is preferable that the ratio of the non-diffusible hydrogen amount to the total hydrogen amount in said inner side weld metal is 0.5% or more. Further, it is preferable that Mo carbide is contained by not less than 1 piece/μm2 in said inner side weld metal. The present invention also includes a method for producing said welded joint and welded steel pipe, characterized by welding the butted portion from the inner side and thereafter welding it from the outer side so that the reheating temperature of the inner side weld metal may reach within the range from 500° C. to 700° C.
摘要:
The present invention, in a welded joint of steel sheets and a steel pipe body having a tensile strength of 800 MPa or more (over X100 in API Standards), provides: the welded joint of the steel sheets and the steel pipe produced by forming a steel sheet into a cylindrical shape and welding both the ends thereof, both excellent in cold cracking resistance; and methods for producing them. The present invention includes an ultrahigh strength welded joint and an ultrahigh strength welded steel pipe excellent in the cold cracking resistance of a weld metal, characterized in that the amount of non-diffusible hydrogen in the inner side weld metal is 0.01 ppm or more. It is preferable that the ratio of the non-diffusible hydrogen amount to the total hydrogen amount in said inner side weld metal is 0.5% or more. Further, it is preferable that Mo carbide is contained by not less than 1 piece/μm2 in said inner side weld metal. The present invention also includes a method for producing said welded joint and welded steel pipe, characterized by welding the butted portion from the inner side and thereafter welding it from the outer side so that the reheating temperature of the inner side weld metal may reach within the range from 500° C. to 700° C.
摘要:
The present invention provides high strength steel plate with excellent low temperature toughness, high strength steel pipe using this as a base metal, and methods of production of the same. The steel plate of the present invention contains Mo: 0.05 to 1.00% and B: 0.0003 to 0.0100%, has a Ceq of 0.30 to 0.53, has a Pcm of 0.10 to 0.20, and has a metal structure which has an area percentage of polygonal ferrite of 20 to 90% and has a balance of a hard phase comprised of one or both of bainite and martensite. To obtain this steel plate, strain-introducing rolling is performed with a start temperature of not more than Ar3+60° C., an end temperature of Ar3 or more, and a reduction ratio of 1.5 or more, then the plate is air-cooled and then acceleratedly cooled from Ar3−100° C. to Ar3−10° C. in temperature by 10° C./s or more.
摘要:
The present invention provides high strength thick welded steel pipe for line pipe superior in low temperature toughness, and a method of production of the same. A base material steel plate containing C: 0.010 to 0.050%, Si: 0.01 to 0.50%, Mn: 0.50 to 2.00%, Al: 0.020% or less, Ti: 0.003 to 0.030%, and Mo: 0.10 to 1.50%, having a carbon equivalent Ceq of 0.30 to 0.53, having a crack susceptability parameter Pcm of 0.10 to 0.20, satisfying formula 3, comprised an area ratio of 20% or less of polygonal ferrite and an area ratio of 80% or more of bainite, and having an effective crystal grain size of 20 μm or less is formed into a pipe shape, then seam welded to make the effective crystal grain size of the heat affected zone 150 μm or less: 10C+100Al+5Mo+5Ni
摘要:
A method is provided for producing an ultra-high strength steel having a tensile strength of at least about 900 MPa (130 ksi), a toughness as measured by Charpy V-notch impact test at −40° C. (−40° F.) of at least about 120 joules (90 ft-lbs), and a microstructure comprising predominantly fine-grained lower bainite, fine-grained lath martensite, or mixtures thereof, transformed from substantially unrecrystallized austenite grains and comprising iron and specified weight percentages of the additives: carbon, silicon, manganese, copper, nickel, niobium, vanadium, molybdenum, chromium, titanium, aluminum, calcium, Rare Earth Metals, and magnesium. A steel slab is heated to a suitable temperature; the slab is reduced to form plate in one or more hot rolling passes in a first temperature range in which austenite recrystallizes; said plate is further reduced in one or more hot rolling passes in a second temperature range below said first temperature range and above the temperature at which austenite begins to transform to ferrite during cooling; said plate is quenched to a suitable Quench Stop Temperature; and said quenching is stopped and said plate is allowed to air cool to ambient temperature.
摘要:
An ultra-high strength boron-containing steel having a tensile strength of at least about 900 MPa (130 ksi), a toughness as measured by Charpy V-notch impact test at −40° C. (−40° F.) of at least about 120 joules (90 ft-lbs), and a microstructure comprising predominantly fine-grained lower bainite, fine-grained lath martensite, or mixtures thereof, transformed from substantially unrecrystallized austenite grains and comprising iron and specified weight percentages of the additives: carbon, silicon, manganese, copper, nickel, niobium, vanadium, molybdenum, chromium, titanium, aluminum, calcium, Rare Earth Metals, and magnesium, is prepared by heating a steel slab to a suitable temperature; reducing the slab to form plate in one or more hot rolling passes in a first temperature range in which austenite recrystallizes; further reducing said plate in one or more hot rolling passes in a second temperature range below said first temperature range and above the temperature at which austenite begins to transform to ferrite during cooling; quenching said plate to a suitable Quench Stop Temperature; and stopping said quenching and allowing said plate to air cool to ambient temperature.
摘要:
A high-strength welded steel pipe is obtained by welding a seam weld portion of a steel plate that are formed in a pipe shape. In the high-strength welded steel pipe, a base metal of the steel plate includes, by mass %, C: 0.010% to 0.080%, Si: 0.01% to 0.50%, Mn: 0.50% to 2.00%, S: 0.0001% to 0.0050%, Ti: 0.003% to 0.030%, Mo: 0.05% to 1.00%, B: 0.0003% to 0.0100%, O: 0.0001% to 0.0080%, N: 0.006% to 0.0118%, P: limited to 0.050% or less, Al: limited to 0.008% or less, and the balance of Fe and inevitable impurities, Ceq is 0.30 to 0.53, Pcm is 0.10 to 0.20, [N]−[Ti]/3.4 is less than 0.003, the average grain size of the prior γ grains in heat affected zones in the steel plate is 250 μm or less, and the prior γ grains include bainite and intragranular bainite.
摘要:
A high-strength welded steel pipe is obtained by welding a seam weld portion of a steel plate that are formed in a pipe shape. In the high-strength welded steel pipe, a base metal of the steel plate includes, by mass %, C: 0.010% to 0.080%, Si: 0.01% to 0.50%, Mn: 0.50% to 2.00%, S: 0.0001% to 0.0050%, Ti: 0.003% to 0.030%, Mo: 0.05% to 1.00%, B: 0.0003% to 0.0100%, O: 0.0001% to 0.0080%, N: 0.006% to 0.0118%, P: limited to 0.050% or less, Al: limited to 0.008% or less, and the balance of Fe and inevitable impurities, Ceq is 0.30 to 0.53, Pcm is 0.10 to 0.20, [N]—[Ti]/3.4 is less than 0.003, the average grain size of the prior γ grains in heat affected zones in the steel plate is 250 μm or less, and the prior γ grains include bainite and intragranular bainite.