摘要:
The present invention provides a line pipe of, e.g., the API standard X60 to X100 class. The line pipe has an excellent deformability, as well as excellent low temperature toughness and high productivity, a steel plate used as the material of the steel pipe. Methods for producing the steel pipe and the steel plate are also provided. In particular, a high-strength steel plate excellent in the deformability has a ferrite phase is dispersed finely, and accounts for 5% to 40% in area percentage in a low temperature transformation structure mainly composed of a bainite phase. For example, most grain sizes of the ferrite phase are smaller than the average grain size of the bainite phase. A high-strength steel pipe excellent in deformability is also provided, in which a large diameter steel pipe is produced through forming the steel plate into a pipe shape. The steel pipe has the above-referenced structure, and satisfies the conditions that YS/TS is 0.95 or less and YS×uEL is 5,000 or more. Methods for producing such steel plate and steel pipe are also provided.
摘要:
The present invention provides high strength steel plate and high strength welded pipe excellent in ductile fracture characteristic and methods of production of the same, that is, high strength steel plate excellent in ductile fracture characteristic, and high strength welded pipe using that steel plate as a base material, having a tensile strength corresponding to the X100 class of the API standard, containing, by mass %, C: 0.01 to 0.5%, Si: 0.01 to 3%, Mn: 0.1 to 5%, P: 0.03% or less, and S: 0.03% or less and a balance of Fe and unavoidable impurities, having a microstructure comprised of, by area ratio, 1 to 60% of ferrite and the balance of bainite and martensite, having a maximum value of the {100} accumulation degree of the cross-section rotated 20 to 50° from the plate thickness cross-section about the rolling direction as an axis of 3 or less, and having plate thickness parallel cracks measured by ultrasonic flaw detection of less than 1 mm.
摘要:
This high-strength steel pipe includes, by mass%, C: 0.02% to 0.09%, Mn: 0.4% to 2.5%, Cr: 0.1% to 1.0%, Ti: 0.005% to 0.03%, Nb: 0.005% to 0.3%, and a balance consisting of Fe and inevitable impurities, in which Si, Al, P, S, and N are limited to 0.6% or less, 0.1% or less, 0.02% or less, 0.005% or less, 0.008% or less, respectively, the bainite transformation index BT is 650° C. or less, and the microstructure thereof is a single bainite microstructure including first bainite and second bainite, the first bainite being a gathered microstructure of bainitic ferrite including no carbide, and the second bainite being a mixed microstructure of bainitic ferrite including no carbide and cementite between the bainitic ferrites.
摘要:
This high-strength steel pipe includes, by mass %, C: 0.02% to 0.09%, Mn: 0.4% to 2.5%, Cr: 0.1% to 1.0%, Ti: 0.005% to 0.03%, Nb: 0.005% to 0.3%, and a balance consisting of Fe and inevitable impurities, in which Si, Al, P, S, and N are limited to 0.6% or less, 0.1% or less, 0.02% or less, 0.005% or less, 0.008% or less, respectively, the bainite transformation index BT is 650° C. or less, and the microstructure thereof is a single bainite microstructure including first bainite and second bainite, the first bainite being a gathered microstructure of bainitic ferrite including no carbide, and the second bainite being a mixed microstructure of bainitic ferrite including no carbide and cementite between the bainitic ferrites.
摘要:
The present invention provides high strength steel plate and high strength welded pipe excellent in ductile fracture characteristic and methods of production of the same, that is, high strength steel plate excellent in ductile fracture characteristic, and high strength welded pipe using that steel plate as a base material, having a tensile strength corresponding to the X100 class of the API standard, containing, by mass %, C: 0.01 to 0.5%, Si: 0.01 to 3%, Mn: 0.1 to 5%, P: 0.03% or less, and S: 0.03% or less and a balance of Fe and unavoidable impurities, having a microstructure comprised of, by area ratio, 1 to 60% of ferrite and the balance of bainite and martensite, having a maximum value of the {100} accumulation degree of the cross-section rotated 20 to 50° from the plate thickness cross-section about the rolling direction as an axis of 3 or less, and having plate thickness parallel cracks measured by ultrasonic flaw detection of less than 1 mm.
摘要:
The present invention provides a thick welded steel pipe excellent in low temperature toughness in which contents of Mn and Mo satisfy (Expression 1) below, Pcm obtained by (Expression 2) below is 0.16 to 0.19, and a metal structure of a base material steel plate consists of ferrite being 30 to 95% in an area ratio and a low temperature transformation structure, and in a metal structure of a coarse-grained HAZ, an area ratio of grain boundary ferrite is 1.5% or more, the total area ratio of the grain boundary ferrite and intragranular ferrite is not less than 11% nor more than 90%, an area ratio of MA is 10% or less, and its balance is composed of bainite. 1.2325≦(0.85×[Mn]−[Mo])≦1.5215 (Expression 1) and Pcm=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10 (Expression 2)
摘要:
A high-strength welded steel pipe is obtained by welding a seam weld portion of a steel plate that are formed in a pipe shape. In the high-strength welded steel pipe, a base metal of the steel plate includes, by mass %, C: 0.010% to 0.080%, Si: 0.01% to 0.50%, Mn: 0.50% to 2.00%, S: 0.0001% to 0.0050%, Ti: 0.003% to 0.030%, Mo: 0.05% to 1.00%, B: 0.0003% to 0.0100%, O: 0.0001% to 0.0080%, N: 0.006% to 0.0118%, P: limited to 0.050% or less, Al: limited to 0.008% or less, and the balance of Fe and inevitable impurities, Ceq is 0.30 to 0.53, Pcm is 0.10 to 0.20, [N]−[Ti]/3.4 is less than 0.003, the average grain size of the prior γ grains in heat affected zones in the steel plate is 250 μm or less, and the prior γ grains include bainite and intragranular bainite.
摘要:
A high-strength welded steel pipe is obtained by welding a seam weld portion of a steel plate that are formed in a pipe shape. In the high-strength welded steel pipe, a base metal of the steel plate includes, by mass %, C: 0.010% to 0.080%, Si: 0.01% to 0.50%, Mn: 0.50% to 2.00%, S: 0.0001% to 0.0050%, Ti: 0.003% to 0.030%, Mo: 0.05% to 1.00%, B: 0.0003% to 0.0100%, O: 0.0001% to 0.0080%, N: 0.006% to 0.0118%, P: limited to 0.050% or less, Al: limited to 0.008% or less, and the balance of Fe and inevitable impurities, Ceq is 0.30 to 0.53, Pcm is 0.10 to 0.20, [N]—[Ti]/3.4 is less than 0.003, the average grain size of the prior γ grains in heat affected zones in the steel plate is 250 μm or less, and the prior γ grains include bainite and intragranular bainite.
摘要:
Ultra-high-strength linepipes having excellent low-temperature toughness manufactured by welding together the edges of steel plates comprising C of 0.03 to 0.07 mass %, Si of not more than 0.6 mass %, Mn of 1.5 to 2.5 mass %, P of not more than 0.015 mass %, S of not more than 0.003 mass %, Ni of 0.1 to 1.5 mass %, Mo of 0.15 to 0.60 mass %, Nb of 0.01 to 0.10 mass %, Ti of 0.005 to 0.030 mass %, Al of not more than 0.06 mass %, one or more of required amounts of B, N, V, Cu, Cr, Ca, REM (rare-earth metals) and Mg, with the remainder consisting of iron and unavoidable impurities and having a (Hv-ave)/(Hv-M) ratio between 0.8 and 0.9 at 2.5≦P≦4.0, wherein Hv-ave is the average Vickers hardness in the direction of the thickness of the base metal and Hv-M is the martensite hardness depending on C-content (Hv-M=270+1300C) and a tensile strength TS-C between 900 MPa and 1100 MPa; P=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+(1+β)Mo−1+β (β=1 when B≧3 ppm and β=0 when B
摘要:
A high-strength steel pipe excellent in weldability on site and a method for producing the steel pipe by improving the reliability of the low temperature toughness of a steel are provided. For example, the steel pipe includes elements to enhance hardenability for furthering high-strengthening and also improving toughness at a weld heat affected zone subjected to double or more layer welding. In the method, the steel is made to consist of a structure composed of bainite and/or martensite by containing prescribed amounts of C, Si, Mn, P, S, Ni, Mo, Nb, Ti, Al and N, and, as occasion demands, one or more of B, V, Cu, Cr, Ca, REM, and Mg, and regulating C, Si, Mn, Cr, Ni, Cu, V and Mo. Such elements enhancing hardenability, by a specific relational expression. The diameter of prior austenite grains may be regulated in a prescribed range. The method may include heating a casting to a temperature not lower than the Ac3 point, hot rolling such casting, and thereafter cooling the resulting hot-rolled steel plate at a prescribed cooling rate.