Abstract:
Problems encountered in the conventional inspection method and the conventional apparatus adopting the method are solved by the present invention using an electron beam by providing a novel inspection method and an inspection apparatus adopting the novel method which are capable of increasing the speed to scan a specimen such as a semiconductor wafer. The inspection novel method provided by the present invention comprises the steps of: generating an electron beam; converging the generated electron beam on a specimen by using an objective lens; scanning the specimen by using the converged electron beam; continuously moving the specimen during scanning; detecting charged particles emanating from the specimen at a location between the specimen and the objective lens and converting the detected charged particles into an electrical signal; storing picture information conveyed by the electrical signal; comparing a picture with another by using the stored picture information; and detecting a defect of the specimen.
Abstract:
An object of the present invention is to provide an inspection method using an electron beam and an inspection apparatus therefor, which are capable of enhancing the resolution, improving the inspection speed and reliability, and realizing miniaturization the apparatus. To achieve the above object, according to the present invention, there is provided an inspection method using an electron beam, including the steps of; applying a voltage on a sample via a sample stage; converging an electron beam on the sample; scanning the sample with the converged electron beam and simultaneously, continuously moving the sample stage; detecting charged particles generated from the sample; and detecting a defect on the sample on the basis of the detected charged particles; wherein a distance between the sample and the shield frame is determined on the basis of a critical discharge between the sample stage and the shield frame; coils of at least hexapoles for correcting the shape of an electron beam are provided; the electron beam is deflected for blanking during movement of the sample with the crossover of the electron beam taken as a fulcrum of blanking; or the magnitude of the voltage applied to the sample may be determined depending on the kind of sample.