Abstract:
A first threshold that is lower than a progressively deteriorating SOC that is an SOC in which a battery performance of the lithium ion secondary battery deteriorates when the lithium ion secondary battery is stored and a second threshold that is greater than the progressively deteriorating SOC are preset. A computer controls a switch provided between electric wires and the lithium ion secondary battery, an electric power supply source that supplies electric power necessary to charge the lithium ion secondary battery and a load that consumes electric power discharged from the lithium ion secondary battery are connected to the electric wires, such that a charging operation for the lithium ion secondary battery is continued from the first threshold to the second threshold when the lithium ion secondary battery is charged based on value of the SOC of the lithium ion secondary battery, the value of the SOC is transmitted from a monitor device that detects the value of the SOC of the lithium ion secondary battery and that controls the switch such that a discharging operation for the lithium ion secondary battery is continued from the second threshold to the first threshold when the lithium ion secondary battery is discharged.
Abstract:
In a predetermined interval, electric power that is generated by power-source equipment is charged to a storage device and the amount of electric power that is accumulated in the storage device is reported from a communication device to a device that is provided to an electric power provider or a consumer. After the passage of a predetermined time interval, the amount of electric power that was previously reported to the device that is provided to the electric power provider or the consumer is discharged from the storage device and supplied to the electric power distribution system.
Abstract:
In a predetermined interval, electric power that is generated by power-source equipment is charged to a storage device and the amount of electric power that is accumulated in the storage device is reported from a communication device to a device that is provided to an electric power provider or a consumer. After the passage of a predetermined time interval, the amount of electric power that was previously reported to the device that is provided to the electric power provider or the consumer is discharged from the storage device and supplied to the electric power distribution system.
Abstract:
An electric device has an electric power measurement unit with an electric power detection element measuring consumed electric power and an information communication element transmitting the measured power. An electric power meter has an information communication element measuring and transmitting total electric power consumed indoors. An information processing unit stores the measured values in every predetermined sampling period. If a difference α of two measurement values of the electric power detection element is a finite value, the information processing unit calculates and stores both a difference β of two measurement values of the electric power meter corresponding to the two measurement values and β/α, and calibrates the amount of electric power consumed by the electric device and that is measured by the electric power detection element using a median of values of β/α obtained in a predetermined measurement period or a median of a predetermined number of values of β/α.
Abstract:
An electric device has an electric power measurement unit with an electric power detection element measuring consumed electric power and an information communication element transmitting the measured power. An electric power meter has an information communication element measuring and transmitting total electric power consumed indoors. An information processing unit stores the measured values in every predetermined sampling period. If a difference α of two measurement values of the electric power detection element is a finite value, the information processing unit calculates and stores both a difference β of two measurement values of the electric power meter corresponding to the two measurement values and β/α, and calibrates the amount of electric power consumed by the electric device and that is measured by the electric power detection element using a median of values of β/α obtained in a predetermined measurement period or a median of a predetermined number of values of β/α.
Abstract:
A secondary battery has a progressively degrading SOC that is an SOC at which the battery performance degrades during storage, and is charged and discharged by a controller. An information processor holds a first threshold value set in advance and lower than the progressively degrading SOC of the secondary battery, and a second threshold value set in advance and higher than the progressively degrading SOC, makes the controller continue an operation to charge the secondary battery from the first threshold value to the second threshold value at the time of charging the secondary battery based on the value of the SOC of the secondary battery detected by the controller, and makes the controller continue an operation to discharge the secondary battery from the second threshold value to the first threshold value at the time of discharging the secondary battery based on the value of the SOC of the secondary battery detected by the controller.
Abstract:
A secondary battery has a progressively degrading SOC that is an SOC at which the battery performance degrades during storage, and is charged and discharged by a controller. An information processor holds a first threshold value set in advance and lower than the progressively degrading SOC of the secondary battery, and a second threshold value set in advance and higher than the progressively degrading SOC, makes the controller continue an operation to charge the secondary battery from the first threshold value to the second threshold value at the time of charging the secondary battery based on the value of the SOC of the secondary battery detected by the controller, and makes the controller continue an operation to discharge the secondary battery from the second threshold value to the first threshold value at the time of discharging the secondary battery based on the value of the SOC of the secondary battery detected by the controller.
Abstract:
A secondary battery has a progressively deteriorating SOC in which battery performance deteriorates when the secondary battery is stored, and is charged and discharged by a control device. An information processing device stores a preset first threshold smaller than the progressively deteriorating SOC of the secondary battery and a preset second threshold greater than the progressively deteriorating SOC, and separates the range from the minimum SOC to the maximum SOC of the secondary battery into, at least, two regions by setting the section from the first threshold to the second threshold as a boundary to thereby cause the control device to charge or discharge the secondary battery within any of the above regions.
Abstract:
A secondary battery has a progressively deteriorating SOC in which battery performance deteriorates when the secondary battery is stored, and is charged and discharged by a control device. An information processing device stores a preset first threshold smaller than the progressively deteriorating SOC of the secondary battery and a preset second threshold greater than the progressively deteriorating SOC, and separates the range from the minimum SOC to the maximum SOC of the secondary battery into, at least, two regions by setting the section from the first threshold to the second threshold as a boundary to thereby cause the control device to charge or discharge the secondary battery within any of the above regions.
Abstract:
A field-effect type transistor has: a source electrode; a drain electrode being a metal electrode; a semiconductor layer provided to be in contact with both of the source electrode and the drain electrode; and a gate electrode provided to face at least a part of the semiconductor layer. The gate electrode has: a first gate electrode; and a second gate electrode provided closer to the drain electrode than the first gate electrode is. The second gate electrode is so connected as to have a same potential as the drain electrode and is electrically isolated from the first gate electrode. Consequently, in a display device, the off-leakage current is suppressed, and reduction in a pixel area and a bus interconnection width is suppressed.