摘要:
An R-T-B exchange spring magnet alloy ingot is provided, wherein the R-T-B exchange spring magnet alloy ingot comprises at least one element selected from Nd, Pr, and Dy in a total amount of 1 to 12% by atom and B in an amount of 3 to 30% by atom, with a balance being T (T represents a substance predominantly comprising Fe, with a portion of Fe atoms being optionally substituted by Co, Ni, Cu, Al, Ga, Cr, and Mn). The R-T-B exchange spring magnet alloy ingot is produced through formation of a composite of crystal grains of a hard magnetic phase and crystal grains of a soft magnetic phase. The R-T-B exchange spring magnet alloy ingot contains crystal grains of a hard magnetic phase having a grain size of 1 μm or less and crystal grains of a soft magnetic phase having a grain size of 1 μm or less in a volume of at least 50% on the basis of the entire volume of the alloy.
摘要:
One object of the present invention is to provide a rare earth magnet alloy ingot, which has improved magnetic properties. In order to achieve the object, the present invention provides a rare earth magnet alloy ingot, wherein the rare earth magnet alloy ingot comprises an R-T-B type magnet alloy (R represents at least one element selected from among rare earth elements, including Y; and T represents a substance predominantly comprising Fe, with a portion of Fe atoms being optionally substituted by Co, Ni, Cu, Al, Ga, Cr, and Mn) containing at least one element selected from among Nd, Pr, and Dy in a total amount of 11.8 to 16.5% by atom and B in an amount of 5.6 to 9.1% by atom; and wherein as determined in an as-cast state of the alloy ingot, R-rich phase that measures 100 μm or more is substantially absent on a cross section.
摘要翻译:本发明的一个目的是提供一种具有改进的磁性能的稀土磁体合金锭。 为了达到上述目的,本发明提供一种稀土类磁铁合金锭,其特征在于,所述稀土类磁铁合金锭包含RTB型磁铁合金(R表示选自稀土元素中的至少一种元素,包括Y; T 代表主要包含Fe的物质,Fe原子的一部分任选地被Co,Ni,Cu,Al,Ga,Cr和Mn所取代),其含有选自Nd,Pr和Dy中的至少一种元素,总量 为11.8〜16.5原子%,B为5.6〜9.1原子% 并且其中如在合金锭的铸态中测定的,在横截面上基本上不存在测量为100μm或更大的富R相。
摘要:
One object of the present invention is to provide a rare earth magnet alloy ingot, which has improved magnetic properties. In order to achieve the object, the present invention provides a rare earth magnet alloy ingot, wherein the rare earth magnet alloy ingot comprises an R-T-B type magnet alloy (R represents at least one element selected from among rare earth elements, including Y; and T represents a substance predominantly comprising Fe, with a portion of Fe atoms being optionally substituted by Co, Ni, Cu, Al, Ga, Cr, and Mn) containing at least one element selected from among Nd, Pr, and Dy in a total amount of 11.8 to 16.5% by atom and B in an amount of 5.6 to 9.1% by atom; and wherein as determined in an as-cast state of the alloy ingot, R-rich phase that measures 100 μm or more is substantially absent on a cross section.
摘要翻译:本发明的一个目的是提供一种具有改进的磁性能的稀土磁体合金锭。 为了达到上述目的,本发明提供一种稀土类磁铁合金锭,其特征在于,所述稀土类磁铁合金锭包含RTB型磁铁合金(R表示选自稀土元素中的至少一种元素,包括Y; T 代表主要包含Fe的物质,Fe原子的一部分任选地被Co,Ni,Cu,Al,Ga,Cr和Mn所取代),其含有选自Nd,Pr和Dy中的至少一种元素,总量 为11.8〜16.5原子%,B为5.6〜9.1原子% 并且其中如在合金锭的铸态中测定的,在横截面上基本上不存在测量为100μm或更大的富R相。
摘要:
One object of the present invention is to provide a rare earth magnet alloy ingot, which has improved magnetic properties. In order to achieve the object, the present invention provides a rare earth magnet alloy ingot, wherein the rare earth magnet alloy ingot comprises an R-T-B type magnet alloy (R represents at least one element selected from among rare earth elements, including Y; and T represents a substance predominantly comprising Fe, with a portion of Fe atoms being optionally substituted by Co, Ni, Cu, Al, Ga, Cr, and Mn.) containing at least one element selected from among Nd, Pr, and Dy in a total amount of 11.8 to 16.5% by atom and B in an amount of 5.6 to 9.1% by atom; and wherein as determined in an as-cast state of the alloy ingot, R-rich phase that measures 100 μm or more is substantially absent on a cross section.
摘要:
The segregation in the hydrogen-absorbing alloy is decreased by a centrifugal casting which is devised in the present invention so that: a melt fed to the bottom portion of a cylindrical rotary mold solidifies during one rotation of the mold; and, the average depositing speed of melt is from approximately 0.005 to 0.1 cm/second.
摘要:
The present invention relates to a casting method which employs rapid solidification of metal, rare-earth metal or the like, as well as to a casting apparatus and a cast alloy. A centrifugal casting method includes the steps of pouring a molten material onto a rotary body; sprinkling the molten material by the effect of rotation of the rotary body; and causing the sprinkled molten material to be deposited and to solidify on the inner surface of a rotating cylindrical mold. The axis of rotation of the rotary body and the axis of rotation of the cylindrical mold are caused not to run parallel to each other. The centrifugal casting method can attain a decrease in average deposition rate. As a result, generation of the dendritic αFe phase or generation of a segregation phase of Mn or the like is suppressed, thereby realizing a high-performance R-T-B-type rare-earth magnet alloy.
摘要:
The present invention relates to a casting method which employs rapid solidification of metal, rare-earth metal or the like, as well as to a casting apparatus and a cast alloy. A centrifugal casting method includes the steps of pouring a molten material onto a rotary body; sprinkling the molten material by the effect of rotation of the rotary body; and causing the sprinkled molten material to be deposited and to solidify on the inner surface of a rotating cylindrical mold. The axis of rotation of the rotary body and the axis of rotation of the cylindrical mold are caused not to run parallel to each other. The centrifugal casting method can attain a decrease in average deposition rate. As a result, generation of the dendritic αFe phase or generation of a segregation phase of Mn or the like is suppressed, thereby realizing a high-performance R-T-B-type rare-earth magnet alloy.
摘要:
The present invention relates to a casting method which employs rapid solidification of metal, rare-earth metal or the like, as well as to a casting apparatus and a cast alloy. A centrifugal casting method includes the steps of pouring a molten material onto a rotary body; sprinkling the molten material by the effect of rotation of the rotary body; and causing the sprinkled molten material to be deposited and to solidify on the inner surface of a rotating cylindrical mold. The axis of rotation of the rotary body and the axis of rotation of the cylindrical mold are caused not to run parallel to each other. The centrifugal casting method can attain a decrease in average deposition rate. As a result, generation of the dendritic &agr;Fe phase or generation of a segregation phase of Mn or the like is suppressed, thereby realizing a high-performance R-T-B-type rare-earth magnet alloy.
摘要:
An electromagnetic wave-absorbing material composition which includes: (A) a compound having two or more carboxyl groups and/or an acid anhydride group thereof, in one molecule of the compound; (B) a compound having two or more epoxy groups in one molecule thereof; and (C) a soft magnetic powder.