Abstract:
A perpendicular magnetic recording medium and a magnetic storage apparatus, which show an excellent S/N ratio and are suitable for ultra high density magnetic recording, are provided. In the perpendicular magnetic recording medium having a recording layer composed of at least two layers of a main recording layer formed above a substrate and a thermally-stabilizing layer formed on the main recording layer, the thermally-stabilizing layer being formed closer to a surface of the medium than the main recording layer, alloy containing Co and Cr as a main component, which shows a low noise property, is used as the main recording layer, amorphous alloy containing rare earth metals and 3d transition metals as a main component, which is excellent in thermal stability, is used as the thermally-stabilizing layer, and a cap layer formed of alloy containing Co and Cr as a main component is formed on a surface of the thermally-stabilizing layer.
Abstract:
A perpendicular magnetic recording medium, which has a low level of recording noise and sufficiently large perpendicular magnetic anisotropy energy relative to demagnetizing field energy, includes a substrate and a multi-layered magnetic film. The multi-layered magnetic film is composed of ferromagnetic metal layers of Co alloy containing at least Cr and non-magnetic metal layers of Pd alloy, each one layer of which are laminated alternately on top of one layer of the other. The ferromagnetic metal layers and the non-magnetic metal layers have a thickness of d1 and d2, respectively, with the ratio of d1/d2 being in the range of 1.5 to 4.0. This specific layer structure reduces the magnetic exchange interaction between magnetic particles in the multi-layered magnetic film. Therefore, the perpendicular magnetic recording medium is stable against thermal disturbance and has a low level of recording noise.
Abstract:
A perpendicular magnetic recording medium, which has a low level of recording noise and sufficiently large perpendicular magnetic anisotropy energy relative to demagnetizing field energy, includes a substrate and a multi-layered magnetic film. The multi-layered magnetic film is composed of ferromagnetic metal layers of Co alloy containing at least Cr and non-magnetic metal layers of Pd alloy, each one layer of which are laminated alternately on top of one layer of the other. The ferromagnetic metal layers and the non-magnetic metal layers have a thickness of d1 and d2, respectively, with the ratio of d1/d2 being in the range of 1.5 to 4.0. This specific layer structure reduces the magnetic exchange interaction between magnetic particles in the multi-layered magnetic film. Therefore, the perpendicular magnetic recording medium is stable against thermal disturbance and has a low level of recording noise.
Abstract:
Embodiments in accordance with the present invention provide a perpendicular magnetic recording medium which is easy to record, offers superior thermal stability of recording magnetization, and allows high-density recording. In one embodiment, a perpendicular magnetic layer with controlled magnetic properties is used as a magnetic storage layer of a perpendicular magnetic recording medium, the magnetic properties having been controlled such that an indicator σhsw [%] of the dispersion of magnetization switching fields in the perpendicular magnetic layer and an indicator Dn [nm] of the intensity of exchange interactions, in film surface directions, in the perpendicular magnetic layer satisfy inequalities σhsw/27+Dn/90 20. The indicators can be measured using a magnetometer.
Abstract translation:根据本发明的实施例提供了易于记录的垂直磁记录介质,提供了优异的记录磁化的热稳定性,并允许高密度记录。 在一个实施例中,使用具有受控磁特性的垂直磁性层作为垂直磁记录介质的磁存储层,其磁特性已经被控制,使得该磁性能的指标σ< 垂直磁性层中的磁化开关场的分散和膜的表面方向上的交换相互作用强度的指示器D N n [nm]满足不等式sigmah < / SUB + / 27 + D SUB> / 90 <1和D SUB> 20。 指标可以用磁力计测量。
Abstract:
Embodiments in accordance with the present invention provide a perpendicular magnetic recording medium which is easy to record, offers superior thermal stability of recording magnetization, and allows high-density recording. In one embodiment, a perpendicular magnetic layer with controlled magnetic properties is used as a magnetic storage layer of a perpendicular magnetic recording medium, the magnetic properties having been controlled such that an indicator σhsw [%] of the dispersion of magnetization switching fields in the perpendicular magnetic layer and an indicator Dn [nm] of the intensity of exchange interactions, in film surface directions, in the perpendicular magnetic layer satisfy inequalities σhsw/27+Dn/90 20. The indicators can be measured using a magnetometer.
Abstract translation:根据本发明的实施例提供了易于记录的垂直磁记录介质,提供了优异的记录磁化的热稳定性,并允许高密度记录。 在一个实施例中,使用具有受控磁特性的垂直磁性层作为垂直磁记录介质的磁存储层,其磁特性已经被控制,使得该磁性性质的指示符σ< 垂直磁性层中的磁化开关场的分散和膜的表面方向上的交换相互作用强度的指示器D N n [nm]满足不等式sigmah < / SUB + / 27 + D SUB> / 90 <1和D SUB> 20。 指标可以用磁力计测量。
Abstract:
A double-layer perpendicular magnetic recording medium suitable for high density recording is obtained. In one embodiment, a granular recording medium is formed on a undercoating layer, in which a first metal composed of Pt, Pd, or an alloy thereof and a second metal composed of Cr or V are included and their composition is 15%
Abstract:
Embodiments of the invention provide a granular medium structure and a significant increase of the Ku value of a magnetic material at the same time using a non-metal material, thereby obtaining a magnetic recording medium capable of high density recording. In one embodiment, a magnetic metal grain in a granular magnetic film made of magnetic metal grains and a non-magnetic material is obtained by laminating a ferromagnetic exchange metallic element that contains mainly Co or Fe and a Pt element alternately and the lamination period is set between about 0.35 nm and 0.9 nm, preferably between about 0.4 nm and 0.55 nm.
Abstract:
Embodiments of the invention provide a perpendicular magnetic recording medium that not only attains the magnetic isolation of crystal grains in a magnetic recording layer from one another in a region of the medium in which the thickness of an intermediate layer is equal to or smaller than about 20 nm but also exhibits excellent crystallographic texture and that exhibits small medium noise, excellent thermal stability, and high write-ability. In one embodiment, a perpendicular magnetic recording medium has at least a soft-magnetic underlayer, a first intermediate layer, a second intermediate layer, a third intermediate layer, and a magnetic recording layer successively formed on a substrate. The magnetic recording layer is composed of ferromagnetic crystal grains and oxides or nitrides, the third intermediate layer is composed of Ru or an Ru alloy, the second intermediate layer is composed of a metal or an alloy having the face-centered cubic lattice structure, and the first intermediate layer is composed of a metal or an alloy having the hexagonal close-packed structure.
Abstract:
Embodiments of the invention provide a perpendicular magnetic recording medium that not only attains the magnetic isolation of crystal grains in a magnetic recording layer from one another in a region of the medium in which the thickness of an intermediate layer is equal to or smaller than about 20 nm but also exhibits excellent crystallographic texture and that exhibits small medium noise, excellent thermal stability, and high write-ability. In one embodiment, a perpendicular magnetic recording medium has at least a soft-magnetic underlayer, a first intermediate layer, a second intermediate layer, a third intermediate layer, and a magnetic recording layer successively formed on a substrate. The magnetic recording layer is composed of ferromagnetic crystal grains and oxides or nitrides, the third intermediate layer is composed of Ru or an Ru alloy, the second intermediate layer is composed of a metal or an alloy having the face-centered cubic lattice structure, and the first intermediate layer is composed of a metal or an alloy having the hexagonal close-packed structure.
Abstract:
Embodiments of the invention provide a perpendicular magnetic recording medium that not only attains the magnetic isolation of crystal grains in a magnetic recording layer from one another in a region of the medium in which the thickness of an intermediate layer is equal to or smaller than about 20 nm but also exhibits excellent crystallographic texture and that exhibits small medium noise, excellent thermal stability, and high write-ability. In one embodiment, a perpendicular magnetic recording medium has at least a soft-magnetic underlayer, a first intermediate layer, a second intermediate layer, a third intermediate layer, and a magnetic recording layer successively formed on a substrate. The magnetic recording layer is composed of ferromagnetic crystal grains and oxides or nitrides, the third intermediate layer is composed of Ru or an Ru alloy, the second intermediate layer is composed of a metal or an alloy having the face-centered cubic lattice structure, and the first intermediate layer is composed of a metal or an alloy having the hexagonal close-packed structure.