Abstract:
A signal processing system which discriminates between voice signals and data signals modulated by a voiceband carrier. The signal processing system includes a voice exchange, a data exchange and a call discriminator. The voice exchange is capable of exchanging voice signals between a switched circuit network and a packet based network. The signal processing system also includes a data exchange capable of exchanging data signals modulated by a voiceband carrier on the switched circuit network with unmodulated data signal packets on the packet based network. The data exchange is performed by demodulating data signals from the switched circuit network for transmission on the packet based network, and modulating data signal packets from the packet based network for transmission on the switched circuit network. The call discriminator is used to selectively enable the voice exchange and data exchange.
Abstract:
A method for processing data may include receiving packetized data via at least one of a plurality of input ports in an Ethernet switch. Each of the plurality of input ports may be partitioned into a plurality of virtual local area network (VLAN) port domains with an assigned port domain identification (ID) for processing 802.1 Class of Service (CoS) priority and Quality of Service (QoS) packetized data. The Ethernet switch may be integrated within a single gigabit Ethernet IP telephone chip, the received packetized data having assigned at least one priority class. One or more bits in at least one of a plurality of registers in the Ethernet switch may be used to filter at least one ingress frame in the packetized data, based on at least one packet header attribute of the at least one ingress frame.
Abstract:
Methods and systems for an Ethernet IP phone chip are provided. In this regard, data may be received via a first port of an Ethernet switch in the Ethernet IP phone chip, and the port(s) via which the data is forwarded may be determined based on characteristics of the data. The Ethernet switch may receive data from a network via a first port, and communicate the received data to one or more on-chip interfaces via a second port. The on-chip interfaces may process the received data and may communicate video contained in the data to an off-chip video processing device. The Ethernet IP phone chip may receive video data from an off-chip video processing device via one or more on-chip interfaces, packetize the video data into one or more Ethernet packets; and communicate the packet(s) onto a network link via the Ethernet switch.
Abstract:
A signal processing system which discriminates between voice signals and data signals modulated by a voiceband carrier. The signal processing system includes a voice exchange, a data exchange and a call discriminator. The voice exchange is capable of exchanging voice signals between a switched circuit network and a packet based network. The signal processing system also includes a data exchange capable of exchanging data signals modulated by a voiceband carrier on the switched circuit network with unmodulated data signal packets on the packet based network. The data exchange is performed by demodulating data signals from the switched circuit network for transmission on the packet based network, and modulating data signal packets from the packet based network for transmission on the switched circuit network. The call discriminator is used to selectively enable the voice exchange and data exchange.
Abstract:
A signal processing system which discriminates between voice signals and data signals modulated by a voiceband carrier. The signal processing system includes a voice exchange, a data exchange and a call discriminator. The voice exchange is capable of exchanging voice signals between a switched circuit network and a packet based network. The signal processing system also includes a data exchange capable of exchanging data signals modulated by a voiceband carrier on the switched circuit network with unmodulated data signal packets on the packet based network. The data exchange is performed by demodulating data signals from the switched circuit network for transmission on the packet based network, and modulating data signal packets from the packet based network for transmission on the switched circuit network. The call discriminator is used to selectively enable the voice exchange and data exchange.
Abstract:
A signal processing system which discriminates between voice signals and data signals modulated by a voiceband carrier. The signal processing system includes a voice exchange, a data exchange and a call discriminator. The voice exchange is capable of exchanging voice signals between a switched circuit network and a packet based network. The signal processing system also includes a data exchange capable of exchanging data signals modulated by a voiceband carrier on the switched circuit network with unmodulated data signal packets on the packet based network. The data exchange is performed by demodulating data signals from the switched circuit network for transmission on the packet based network, and modulating data signal packets from the packet based network for transmission on the switched circuit network. The call discriminator is used to selectively enable the voice exchange and data exchange.
Abstract:
A signal processing system which discriminates between voice signals and data signals modulated by a voiceband carrier. The signal processing system includes a voice exchange, a data exchange and a call discriminator. The voice exchange is capable of exchanging voice signals between a switched circuit network and a packet based network. The signal processing system also includes a data exchange capable of exchanging data signals modulated by a voiceband carrier on the switched circuit network with unmodulated data signal packets on the packet based network. The data exchange is performed by demodulating data signals from the switched circuit network for transmission on the packet based network, and modulating data signal packets from the packet based network for transmission on the switched circuit network. The call discriminator is used to selectively enable the voice exchange and data exchange.
Abstract:
A method for processing data may include receiving packetized data via at least one of a plurality of input ports in an Ethernet switch. Each of the plurality of input ports may be partitioned into a plurality of virtual local area network (VLAN) port domains with an assigned port domain identification (ID) for processing 802.1 Class of Service (CoS) priority and Quality of Service (QoS) packetized data. The Ethernet switch may be integrated within a single gigabit Ethernet IP telephone chip, the received packetized data having assigned at least one priority class. One or more bits in at least one of a plurality of registers in the Ethernet switch may be used to filter at least one ingress frame in the packetized data, based on at least one packet header attribute of the at least one ingress frame.
Abstract:
A signal processing system which discriminates between voice signals and data signals modulated by a voiceband carrier. The signal processing system includes a voice exchange, a data exchange and a call discriminator. The voice exchange is capable of exchanging voice signals between a switched circuit network and a packet based network. The signal processing system also includes a data exchange capable of exchanging data signals modulated by a voiceband carrier on the switched circuit network with unmodulated data signal packets on the packet based network. The data exchange is performed by demodulating data signals from the switched circuit network for transmission on the packet based network, and modulating data signal packets from the packet based network for transmission on the switched circuit network. The call discriminator is used to selectively enable the voice exchange and data exchange.
Abstract:
Techniques for interactively presenting word-alignments of multilingual translations and automatically improving those translations based upon user feedback are described herein. With one or more implementations of the techniques described herein, a word-alignment user-interface (UI) concurrently displays a pair of bilingual sentences, where one is a translation of the other, and interactively highlights linked (i.e., “word-aligned”) words and phrases of the pair. Other implementations of the techniques described herein offer an option for a user to provide feedback about the existing word-alignments or realign the words or phrases. In still other described implementations, word-alignment is automatically improved based upon that user feedback.