摘要:
The present invention is a directed to a non-pixelated scintillator array for a CT detector as well as an apparatus and method of manufacturing same. The scintillator array is comprised of a number of ceramic fibers or single crystal fibers that are aligned in parallel with respect to one another. As a result, the pack has very high dose efficiency. Furthermore, each fiber is designed to direct light out to a photodiode with very low scattering loss. The fiber size (cross-sectional diameter) may be controlled such that smaller fibers may be fabricated for higher resolution applications. Moreover, because the fiber size can be controlled to be consistent throughout the scintillator array and the fibers are aligned in parallel with one another, the scintillator array, as a whole, also is uniform. Therefore, precise alignment with the photodiode array or the collimator assembly is not necessary.
摘要:
The present invention is a directed to a non-pixelated scintillator array for a CT detector as well as an apparatus and method of manufacturing same. The scintillator array is comprised of a number of ceramic fibers or single crystal fibers that are aligned in parallel with respect to one another. As a result, the pack has very high dose efficiency. Furthermore, each fiber is designed to direct light out to a photodiode with very low scattering loss. The fiber size (cross-sectional diameter) may be controlled such that smaller fibers may be fabricated for higher resolution applications. Moreover, because the fiber size can be controlled to be consistent throughout the scintillator array and the fibers are aligned in parallel with one another, the scintillator array, as a whole, also is uniform. Therefore, precise alignment with the photodiode array or the collimator assembly is not necessary.
摘要:
A composition including at least one of a glass composition and a glass ceramic composition, the composition includes a plurality of scintillator crystals.
摘要:
A multi-layer reflector for a CT detector is disclosed. The reflector includes an x-ray absorption component that is sandwiched between a pair of highly reflective components. Such a reflector is formed between adjacent scintillators of a CT detector so as to reduce cross-talk between adjacent scintillators as well as maintain a relatively high light output for signal detection. Moreover, the multi-layer reflectors may be disposed one-dimensionally or two-dimensionally across a scintillator array. A method of manufacturing such a reflector and incorporating same into a CT detector is also disclosed.
摘要:
A scintillator array for use in a CT imaging system and a method for making the scintillator array are provided. The scintillator array includes a plurality of projecting elements disposed proximate one another. The scintillator array further includes a glass compound containing a plurality of reflective particles being disposed on the plurality of projecting elements, wherein the projecting elements emit light in response to receiving x-rays.
摘要:
A detector includes a reflector and a scintillator in optical communication with the reflector, wherein both the reflector and the scintillator are fabricated from the same material.
摘要:
A pixilated scintillator array for a radiation detector of an imaging system includes a plurality of scintillator pixels arranged side by side in an array. The scintillator pixels are separated from adjacent scintillator pixels by gaps. Each scintillator pixels includes a top surface, a plurality of side surfaces, and a first layer covering the top surface and the side surfaces of each scintillator pixel. The first layer is formed from a smoothing coating. A second layer formed from a reflective metal coating covers the first layer, and a third layer formed from a barrier coating covers the second layer.
摘要:
A detector for detecting high-energy radiation is disclosed. The detector includes scintillating material with a garnet structure includes gadolinium, yttrium, cerium, gallium, and aluminum. The scintillating material is expressed as (Gd1−x−y−zYxAyCez)3+u(Ga1−m−nAlmDn)5−uO12:wFO, wherein A is lutetium, lanthanum, terbium, dysprosium, or a combination thereof; D is indium, scandium, or a combination thereof; F is a divalent ion; 0≦x 1.