Abstract:
A method and an apparatus are disclosed for separating or slitting a rigid material, in particular a piece of wood, having a modulus of elasticity of between 50,000 and 400,000 kg/cm.sup.2. A narrow tool having chip-removing elements, in particular a circular saw blade, produces a slot or kerf of finite width in the material at a cutting speed of more than 40 m/s. After the chip-removing elements having passed, a separator element bends a side piece out of the slot plane so that after the chip-removing elements have passed, the side piece is always at a distance from the tool. When viewed along the feed direction of the material, the separator element is provided with a hump at a distance from its periphery adjoining the tool and being first to come into contact with the material when the material is fed in. An imaginary connection line extending between the hump and the chip-removing elements is at a distance above a first portion of the separator element lying between the hump and the periphery.
Abstract:
An apparatus and a method serve for cutting elongate pieces of wood having a modulus of elasticity between 50,000 and 400,000 kg/cm.sup.2. A circular saw blade is provided having a plurality of spaced peripheral teeth. The saw blade is rotated about an axis at a cutting speed exceeding 40 m/s. The pieces of wood are displaced relative to the saw blade along a feeding direction extending perpendicular to the saw blade axis of rotation. A stationary bending element is arranged on a broad side of the saw blade adjoining the cutting teeth. The bending element has a radially profiled surface with at thickness increasing towards the axis and decreasing towards the cutting teeth. The saw blade can be used to cut a slot into the pieces of wood along the feeding direction, thus generating a first and a second section of the pieces of wood. The bending element ensures that the first section is lifted from the saw blade immediately after the formation of the slot. A deflection element is arranged at a first distance from the bending element downstream along the feeding direction. The deflection element exerts a first force on a first surface of the first section facing away from the bending element. A supporting element is arranged at a second distance from the bending element downstream along the feeding direction with the second distance being smaller than the first distance. The supporting element exerts a second force on a second surface of the first section facing the bending element.
Abstract:
A method and an apparatus for fabricating strands from round wood are disclosed. The strands have a length of between 200 and 350 mm in the direction of the wood fibers and have a width of between 1 and 15 mm. The strands are fabricated from profiled logs. In the cross-section of the logs, residual areas outside a center piece are defined, the center piece being the area intended to be dissected into beams or boards at a later stage. The residual areas are provided with longitudinal slits by cutting or sawing. The strands are then cut out of the residual areas until the residual areas are entirely removed.
Abstract:
A method and apparatus for producing lumber products which are machined on all sides. With this method, the curved trunk which is to be machined, and which increases approximately conically in thickness toward one of its ends, is first, prior to flattening its longitudinal sides and cutting off boards, aligned relative to a processing line of sawmill equipment in such a way that its longitudinal central plane, which is disposed in the direction of curvature of the trunk, extends approximately parallel to the machining surfaces of side cutting devices which flatten the longitudinal sides of the trunk. After that, a portion of the large trunk end which projects beyond an alignment plane is flattened. This flattening is effected in a plane which is tangential to the two trunk ends on a convexly curved surface portion thereof.
Abstract:
An apparatus for producing an essentially wedge-shaped wood flake comprises a chipping tool rotating about a first, horizontal axis for chipping the flake out of the wood such that the flake has a first, concave surface and a second, convex surface. The flake is delimited between the surfaces. A circular saw blade is provided rotating about a second, vertical axis for removing wood in an area in which the surfaces intersect in an imaginary tip, prior to the chipping out.
Abstract:
A conveyor system serves for conveying timber products, in particular boards (13) having at least one flat side. The conveyor system (10) comprises a transverse conveyor and a linear conveyor (11) the conveying direction (14) of which include between them an angle of substantially 90.degree. in a horizontal plane. The transverse conveyor is arranged upstream of the linear conveyor (11) in the conveying direction. It is adapted for feeding the timber products in a direction perpendicular to their longitudinal extension and for transferring them to the linear conveyor (11) at a transfer station. The linear conveyor (11) comprises, in the area of the transfer station, at least one linear conveyor (28) gripping the downstream end of the timber product, at least one vacuum jack (26, 27) acting on the middle portion of the timber product from below, at least one jack roller (50, 51, 52) arranged above the vacuum jack (26, 27) and capable of being pivoted in upward direction, away from the timber product, and a sequence control unit for actuating the transverse conveyor, the linear conveyor (28) and the jack roller (50, 51, 52) (FIG. 1).
Abstract:
A method and a device serve for cutting or slotting rigid material, in particular wood, having a modulus of elasticity of, preferably, approximately 50,000 to 400,000 kg/cm.sup.2. A gap of finite width is cut into the material by a narrow tool comprising cutting elements, in particular a circular saw blade, at a cutting speed of over 40 m/s. After passage of the cutting element a timber section is always lifted off the remainder of the material and bent out of the plane of the gap. In order to reduce the thermal loading of the tool, which is generated by the friction between the timber section and the tool, the timber section is always bent off in such a manner that once the timber section has left the cutting elements, it is spaced a certain distance from the circular saw blade.
Abstract:
A band saw, a band saw assembly, and a method of spatially positioning a band saw blade are suggested. The band saw comprises a band saw blade against which a sawing material is adapted to be guided in a feed direction. A guide for the band saw blade has at least one magnet exerting a force on the band saw blade determining the spatial position thereof. The at least one magnet is adjustable in its force effect and the force is directed transversely to the feed direction. The guide, as viewed in the feed direction of the sawing material, has a front magnet and a rear magnet, the magnets facing a front area and a rear area, respectively, of the band saw blade. A method of spatially positioning a band saw blade is executed while a sawing material is guided against the band saw blade in a feed direction. A magnet force is exerted on the band saw blade. The magnet force, and thereby the position of the band saw blade is adjusted transversely to the feed direction. The magnet force, as viewed in the feed direction of the sawing material, is exerted on a front area and on a rear area of the band saw blade.
Abstract:
For use as a wood intermediary and the like in industry, an essentially wedge-shaped wood flake with opposite concave and convex surfaces that converge at an imaginary tip outside the flake dimensions. The tip is located beyond the flake a distance of typically between 40% and 100% of the flake length.
Abstract:
A circular saw blade has a rotary axis and a flat annular body arranged therearound. The annular body has a periphery being provided with teeth. The annular body is of hollow conical shape. For manufacturing the circular saw blade, an initially flat annular body is bolted into a concentric conical support element, thereby deforming the annular body into a hollow conical shape.