Abstract:
A therapeutic agent comprising a nucleic acid and a TCR modified immune cell and use thereof. The therapeutic agent comprises a first composition comprising a first active ingredient and a second composition comprising a second active ingredient. The first active ingredient includes or contains a nucleic acid having a labeling polypeptide coding sequence for being introduced into a tumor cell and/or a cancer cell. The labeling polypeptide has one or more epitope polypeptides which can be presented on a surface of the tumor cell and/or cancer cell by MHC class I molecules. The second composition comprises a second active ingredient in a second pharmaceutically acceptable carrier and the second active ingredient comprises a T cell receptor modified immune cell which can specifically recognize and bind to the epitope polypeptide presented by MHC class I molecules. The therapeutic agent achieves synergistic treatment effect and provides a new route for tumor treatment.
Abstract:
The invention provides an in vivo individualized systemic immunotherapeutic method and device. The method includes, in a non-sequential manner: (1) increasing release amount of tumor antigens at a tumor site; (2) at the tumor site, increasing level of proteins capable of adhering to and/or wrapping the tumor antigens; (3) at the tumor site, increasing level of dedicated antigen-presenting cells involved in immunity, and establishing, between the dedicated antigen-presenting cells and immune effector cells, a close connection capable of activating the immune effector cells; and (4) at the tumor site, increasing level and improving function of the immune effector cells. The steps (1)-(4) each reaches a maximum value at a respective time which overlaps with each other maximally, as well as at a respective site which overlaps with each other maximally. The invention combines oncolytic therapy and immunotherapy, in individualized systemic immunotherapy, and provides significantly improved therapeutic effect.
Abstract:
The invention provides an isolated recombinant oncolytic vaccinia virus, pharmaceutical compositions and uses thereof for drugs for treatment of tumors and/or cancers. The isolated recombinant oncolytic vaccinia virus is functionally deficient in the TK gene and the VGF gene, and the genome of the recombinant oncolytic vaccinia virus is integrated with an exogenous IL-21 gene, and wherein the IL-21 gene is capable of being expressed in tumor cells. The recombinant oncolytic vaccinia virus can selectively replicate in tumor cells, and can also fully exert the anti-tumor immune effect of the exogenous IL-21, such that the oncolytic killing effect of the oncolytic virus and the anti-tumor immune stimulation effect of IL-21 achieve a synergic effect.
Abstract:
A therapeutic agent and method of administering the therapeutic agent for the treatment of tumors and/or cancers of a subject, the therapeutic agent comprising a first pharmaceutical composition comprising a first active ingredient in a first druggable vehicle, wherein the first active ingredient comprises a nucleic acid encoding a labelling polypeptide comprising one or more antigenic epitope peptides and/or encoding a MHC protein; a second pharmaceutical composition comprising a second active ingredient in a second druggable vehicle, wherein the second active ingredient comprises immune cells purified from peripheral blood or from tumor tissue and are cultured in vitro; wherein the nucleic acid when administered to the subject as part of the pharmaceutical composition causes the tumor cells and/or cancer cells of the subject to express the one or more antigenic epitope peptides to elicit an immune response of the immune cells.
Abstract:
The present disclosure provides an isolated recombinant oncolytic adenovirus, a pharmaceutical composition, and uses thereof for drugs for treatment of tumors and/or cancers. The recombinant oncolytic adenovirus is a selectively replicating oncolytic adenovirus, and the genome of the recombinant oncolytic adenovirus is integrated with a coding sequence of exogenous shRNA capable of inhibiting PDL1 expression in tumor cells. The replication capability of the virus in normal primary cells is much lower than the replication capability of the virus in tumor cells. Moreover, the expressed shPDL1 can significantly reduce the level of PDL1 protein highly expressed in tumor cells. Thus, the oncolytic killing effect of the oncolytic virus and the anti-tumor immunostimulatory effect of immune cells produce a synergistic effect.
Abstract:
A therapeutic agent and method of administering the therapeutic agent for the treatment of tumors and/or cancers of a subject, the therapeutic agent comprising a first pharmaceutical composition comprising a first active ingredient in a first druggable vehicle, wherein the first active ingredient comprises a nucleic acid encoding a labelling polypeptide comprising one or more antigenic epitope peptides and/or encoding a MHC protein; a second pharmaceutical composition comprising a second active ingredient in a second druggable vehicle, wherein the second active ingredient comprises immune cells purified from peripheral blood or from tumor tissue and are cultured in vitro; wherein the nucleic acid when administered to the subject as part of the pharmaceutical composition causes the tumor cells and/or cancer cells of the subject to express the one or more antigenic epitope peptides to elicit an immune response of the immune cells.
Abstract:
Provided is the use of selectively replicating oncolytic viruses in the preparation of immunostimulants for treatment of tumors and/or cancers, wherein the oncolytic viruses do not carry exogenous immunoregulatory genes.
Abstract:
The present disclosure provides therapeutic agents and uses thereof for drugs for treatment of tumors and/or cancers. The active ingredients of the therapeutic agents comprise an oncolytic virus that selectively replicate in tumor cells and comprise NK cells.
Abstract:
The invention provides an in vivo individualized systemic immunotherapeutic method and device. The method includes, in a non-sequential manner: (1) increasing release amount of tumor antigens at a tumor site; (2) at the tumor site, increasing level of proteins capable of adhering to and/or wrapping the tumor antigens; (3) at the tumor site, increasing level of dedicated antigen-presenting cells involved in immunity, and establishing, between the dedicated antigen-presenting cells and immune effector cells, a close connection capable of activating the immune effector cells; and (4) at the tumor site, increasing level and improving function of the immune effector cells. The steps (1)-(4) each reaches a maximum value at a respective time which overlaps with each other maximally, as well as at a respective site which overlaps with each other maximally. The invention combines oncolytic therapy and immunotherapy, in individualized systemic immunotherapy, and provides significantly improved therapeutic effect.