摘要:
Methods and systems for monitoring material loss in a downhole environment arising from corrosion and/or erosion include placing a downhole sensor in a borehole. The resistance of the downhole sensor is measured using a four-probe resistance technique in which a power source is provided at two electrodes of the downhole sensor and voltage is measured at two voltage taps. A rise in voltage over time indicates loss of conductive material on the downhole sensor. The conductive material on the downhole sensor may be formed to provide discrete voltage increases for improving reliability of material loss and/or rate of material loss resistance measurements.
摘要:
A device and method is described to parallelize a pressure-volume-temperature (“PVT”) analysis using gas chromatography and mass spectrometry techniques such that a portion of the pressure, temperature and volume analysis is performed separately from others. The resulting PVT data is then recombined statistically for a complete PVT analysis. The device may also obtain compositional data of the fluid to perform an equation of state analysis or reservoir simulations.
摘要:
The disclosure relates to logging sensor or tool including an electromagnetic radiation source operable to emit at least one wavelength of electromagnetic radiation, a detector operable to detect the wavelength of electromagnetic radiation, a polycrystalline transparent ceramic component transparent to the wavelength of radiation, and a flowline between the electromagnetic radiation source and the detector having at least a portion of a wall formed from the polycrystalline transparent ceramic component, the flow line operable to permit the flow of a drilling fluid. Such a sensor may be used in a logging while drilling or measuring while drilling apparatus. The also disclosure relates to a wireline measurement apparatus including a sensor comprising a polycrystalline transparent ceramic component. The disclosure further relates to a cast logging sensor or tool component comprising a polycrystalline transparent ceramic component, wherein the sensor component has a shape not obtainable from a single crystal using machining techniques.
摘要:
An optical element devices and method are described herein. An example optical device may include an optical element. The optical element may have an optical path material to allow a light to pass therethrough. The optical path material may have a first end portion with a first end surface, a second end portion with a second end surface, and a middle portion between the first and second end portions with an interior and an exterior surface. A coating may be disposed along the exterior surface and diffused into the optical path material. The coating may minimize leakage of the light from the interior through the exterior surface.
摘要:
An optical element device and method of fabrication thereof are described herein. An example optical device may include an optical element (100). The optical element (100) may have an optical path material (105) to allow a light to pass therethrough. The optical path material (105) may have a first end portion (110) with a first end surface (112), a second end portion (110) with a second end surface (112), and a middle portion (115) between the first and second end portions (110) with an interior (116) and an exterior surface (117). A coating (120) may be disposed along the exterior surface (117) and diffused into the optical path material (105). The coating (120) may minimize leakage of the light from the interior (116) through the exterior (117) surface.
摘要:
A device and method is described to parallelize a pressure-volume-temperature (“PVT”) analysis using gas chromatography and mass spectrometry techniques such that a portion of the pressure, temperature and volume analysis is performed separately from others. The resulting PVT data is then recombined statistically for a complete PVT analysis. The device may also obtain compositional data of the fluid to perform an equation of state analysis or reservoir simulations.
摘要:
An optical element devices and method are described herein. An example optical device may include an optical element. The optical element may have an optical path material to allow a light to pass therethrough. The optical path material may have a first end portion with a first end surface, a second end portion with a second end surface, and a middle portion between the first and second end portions with an interior and an exterior surface. A coating may be disposed along the exterior surface and diffused into the optical path material. The coating may minimize leakage of the light from the interior through the exterior surface.
摘要:
An optical element device and method of fabrication thereof are described herein. An example optical device may include an optical element (100). The optical element (100) may have an optical path material (105) to allow a light to pass therethrough. The optical path material (105) may have a first end portion (110) with a first end surface (112), a second end portion (110) with a second end surface (112), and a middle portion (115) between the first and second end portions (110) with an interior (116) and an exterior surface (117). A coating (120) may be disposed along the exterior surface (117) and diffused into the optical path material (105). The coating (120) may minimize leakage of the light from the interior (116) through the exterior (117) surface.
摘要:
Methods and systems for monitoring material loss in a downhole environment arising from corrosion and/or erosion include placing a downhole sensor in a borehole. The resistance of the downhole sensor is measured using a four-probe resistance technique in which a power source is provided at two electrodes of the downhole sensor and voltage is measured at two voltage taps. A rise in voltage over time indicates loss of conductive material on the downhole sensor. The conductive material on the downhole sensor may be formed to provide discrete voltage increases for improving reliability of material loss and/or rate of material loss resistance measurements.