摘要:
Disclosed is a fuel cell with enhanced mass transfer characteristics in which a highly hydrophobic porous medium, which is prepared by forming a micro-nano dual structure in which nanometer-scale protrusions with a high aspect ratio are formed on the surface of a porous medium with a micrometer-scale roughness by plasma etching and then by depositing a hydrophobic thin film thereon, is used as a gas diffusion layer, thereby increasing hydrophobicity due to the micro-nano dual structure and the hydrophobic thin film. When this highly hydrophobic porous medium is used as a gas diffusion layer for a fuel cell, it is possible to reduce water flooding by efficiently discharging water produced by an electrochemical reaction of the fuel cell and to improve the performance of the fuel cell by facilitating the supply of reactant gases such as hydrogen and air (oxygen) to a membrane-electrode assembly (MEA).
摘要:
Disclosed is a fuel cell with enhanced mass transfer characteristics in which a highly hydrophobic porous medium, which is prepared by forming a micro-nano dual structure in which nanometer-scale protrusions with a high aspect ratio are formed on the surface of a porous medium with a micrometer-scale roughness by plasma etching and then by depositing a hydrophobic thin film thereon, is used as a gas diffusion layer, thereby increasing hydrophobicity due to the micro-nano dual structure and the hydrophobic thin film. When this highly hydrophobic porous medium is used as a gas diffusion layer for a fuel cell, it is possible to reduce water flooding by efficiently discharging water produced by an electrochemical reaction of the fuel cell and to improve the performance of the fuel cell by facilitating the supply of reactant gases such as hydrogen and air (oxygen) to a membrane-electrode assembly (MEA).
摘要:
Disclosed is a membrane electrode assembly with enhanced hydrophobicity and a method for manufacturing the same. In particular, a nano pattern with a high aspect ratio is formed in a catalyst support on the surface of a catalyst layer constituting the membrane electrode assembly using plasma etching. A hydrophobic thin film is then formed on the nano pattern formed in the catalyst support.
摘要:
The present invention provides a porous medium with increased hydrophobicity and a method of manufacturing the same, in which a micro-nano dual structure is provided by forming nanoprotrusions with a high aspect ratio by performing plasma etching on the surface of a porous medium with a micrometer-scale surface roughness and a hydrophobic thin film is deposited on the surface of the micro-nano dual structure, thus significantly increasing hydrophobicity. When this highly hydrophobic porous medium is used as a gas diffusion layer of a fuel cell, it is possible to efficiently discharge water produced during electrochemical reaction of the fuel cell, thus preventing flooding in the fuel cell. Moreover, it is possible to sufficiently supply reactant gases such as hydrogen and air (oxygen) to a membrane electrode assembly (MEA), thus improving the performance of the fuel cell.
摘要:
Disclosed is a membrane electrode assembly with enhanced hydrophobicity and a method for manufacturing the same. In particular, a nano pattern with a high aspect ratio is formed in a catalyst support on the surface of a catalyst layer constituting the membrane electrode assembly using plasma etching. A hydrophobic thin film is then formed on the nano pattern formed in the catalyst support.
摘要:
The present invention provides a porous medium with increased hydrophobicity and a method of manufacturing the same, in which a micro-nano dual structure is provided by forming nanoprotrusions with a high aspect ratio by performing plasma etching on the surface of a porous medium with a micrometer-scale surface roughness and a hydrophobic thin film is deposited on the surface of the micro-nano dual structure, thus significantly increasing hydrophobicity. When this highly hydrophobic porous medium is used as a gas diffusion layer of a fuel cell, it is possible to efficiently discharge water produced during electrochemical reaction of the fuel cell, thus preventing flooding in the fuel cell. Moreover, it is possible to sufficiently supply reactant gases such as hydrogen and air (oxygen) to a membrane electrode assembly (MEA), thus improving the performance of the fuel cell.
摘要:
Disclosed is an electrolyte membrane for a membrane-electrode assembly, which may include a filler that is a polymer compound (oligomer) having a low molecular weight. The electrolyte membrane may suitably include an oligomeric poly(vinylpyrrolidone) compound including a sulfonic acid group. The electrolyte membrane for a membrane-electrode assembly may have improved proton conductivity.
摘要:
Disclosed is a method of manufacturing an electrolyte membrane for fuel cells. The method includes preparing an electrolyte layer including one or more ion conductive polymers that form a proton movement channel, and permeating a gas from a first surface of the electrolyte layer to a second surface of the electrolyte layer.
摘要:
Disclosed are an electrolyte membrane with improved ion conductivity and enhanced water transport and a method for manufacturing the same. The electrolyte membrane includes an ion transport layer including an ionomer having proton conductivity and a catalyst dispersed in the ion transport layer, and the catalyst includes a support including a shell configured to have a designated shape and size and to be hollow and at least one hole configured to allow an inner space to communicate with an outside therethrough, and a metal supported on the support.
摘要:
Disclosed are a polymer electrolyte membrane for a fuel cell, a membrane-electrode assembly including the same, a fuel cell and a method of manufacturing the polymer electrolyte membrane for a fuel cell. Particularly, the polymer electrolyte membrane for a fuel cell may include ionomer layers including a voltage reversal tolerance-increasing additive including a water electrolysis catalyst and an electrical conductor and provided on a porous reinforced film.