Abstract:
The present invention provides a method, a device, and a system for determining a GRE tunnel identifier, applied to a scenario in which there are at least two GRE tunnels between a HAG and HCPE and the at least two GRE tunnels are bonded. The method includes: receiving, by the HAG, a service packet that is sent by the HCPE through a first GRE tunnel, where the service packet includes a source IP address of the first GRE tunnel carrying the service packet, and the first GRE tunnel is one of the at least two GRE tunnels; and looking up, by the HAG, a correspondence table according to the source IP address of the first GRE tunnel, to determine a tunnel identifier of the first GRE tunnel carrying the service packet, where the correspondence table includes a correspondence between the source IP address of the first GRE tunnel and the tunnel identifier of the first GRE tunnel. Therefore, in embodiments of the present invention, in a GRE tunnel bonding scenario, a GRE tunnel through which a service packet is received can be flexibly and efficiently distinguished.
Abstract:
Embodiments of the present invention disclose a method for creating a ring network label switched path. The method includes: receiving, by a first node, a first Path message used for creating a first label switched path from a second node; allocating a first label to the first label switched path; sending a first Resv message carrying the first label to the second node; and when the first node receives a second Path message and determines that a destination node of the second label switched path is the same as that of the first label switched path, allocating the first label to the second label switched path; and sending a second Resv message carrying the first label to the second node. Solutions of the embodiments of the present invention helps reduce the number of created ring network label switched paths and maintenance complexity.
Abstract:
Embodiments of this application provide a bit-forwarding ingress router, a bit-forwarding router, and an OAM test method, and pertain to the field of multicast networks. A first BFR receives an OAM request packet from a BFIR; the first BFR determines, according to the OAM request packet, that a destination BFR corresponding to the OAM request packet is the first BFR; and the first BFR obtains a first OAM response packet according to an ID of the BFIR, and sends the first OAM response packet to the BFIR. According to the method and the apparatus that are provided in the embodiments of this application, a problem that a BFIR cannot diagnose or handle a transmission fault when the fault occurs during transmission of a multicast packet can be resolved, which helps implement connectivity testing by using an OAM packet and enables testing of multiple BFERs.
Abstract:
Embodiments of this application provide a bit-forwarding ingress router, a bit-forwarding router, and an OAM test method, and pertain to the field of multicast networks. A first BFR receives an OAM request packet from a BFIR; the first BFR determines, according to the OAM request packet, that a destination BFR corresponding to the OAM request packet is the first BFR; and the first BFR obtains a first OAM response packet according to an ID of the BFIR, and sends the first OAM response packet to the BFIR. According to the method and the apparatus that are provided in the embodiments of this application, a problem that a BFIR cannot diagnose or handle a transmission fault when the fault occurs during transmission of a multicast packet can be resolved, which helps implement connectivity testing by using an OAM packet and enables testing of multiple BFERs.
Abstract:
A packet processing method and a network device in a hybrid access network. The method comprises sending, by a first network device, a first data packet in a first sending window to a second network device by using a first tunnel. In response to receiving a first acknowledgement response sent by the second network device, increasing, by the first network device, a size of the first sending window based on a first proportion. In response to not receiving, within a first predetermined time, the first acknowledgement response, decreasing the size of the first sending window based on a second proportion; and in response to determining that the size of the first sending window is greater than or equal to a first threshold, sending a second data packet to a second receiving window of the second network device by using a second sending window.
Abstract:
Embodiments of the present application provide a method, device, and system for processing an OAM packet, where the method for processing an OAM packet includes: receiving, by a first network device, an operation, administration and maintenance (OAM) instruction sent by an OAM server, where the OAM instruction carries first format information and a first sending target identifier, where the first format information is used for indicating an OAM packet format; and generating, by the first network device, a first OAM packet according to the first format information, and sending the first OAM packet to a network device indicated by the first sending target identifier. The method, device, and system for processing an OAM packet provided in the embodiments of the present application achieve adaptability to different OAM standards without changing of a hardware structure of a network device, and improve OAM processing flexibility.