摘要:
The present application relates to a method for designing a nonsymmetric freeform surface optical system, and the method including the following steps establishing an initial plane system. The initial plane system is consistent with the expected system structure, but there is no focal power in the initial plane system. The image plane tilt angle of the initial plane system is defined as θ. The point-by-point method is used to calculate the coordinates and normal vectors of the data points used to construct the freeform surface. The iterative optical system is obtained by iteration; and the iterative optical system is optimized.
摘要:
A method for designing a freeform concave grating imaging spectrometer includes selecting a series of light rays incident from different positions of a slit as characteristic light rays. The coordinates and normal directions of characteristic data points at intersections of the characteristic light rays and a surface of a freeform concave grating are calculated. A freeform surface shape of the freeform concave grating is obtained by fitting, so that an initial structure is obtained. Then the initial structure is optimized.
摘要:
A method for designing freeform surface imaging system comprises: constructing a series of coaxial spherical systems with different optical power (OP) distributions; tilting all optical elements of each coaxial spherical system by a series of angles to obtain a series of off-axis spherical systems; finding all unobscured off-axis spherical systems; and then specifying a system size or structural constraints, and finding a series of compact unobstructed off-axis spherical systems; constructing a series of freeform surface imaging systems based on the series of compact unobstructed off-axis spherical system, and correcting the OP of entire system; improving an image quality of each freeform surface imaging systems and finding an optimal tilt angle of an image surface; and automatically evaluating an image quality of each freeform surface imaging system based on an evaluation metric, and outputting the freeform surface imaging systems that meet a given requirements.
摘要:
A freeform surface optical telescope imaging system is provided. The freeform surface optical telescope imaging system comprises a primary mirror, a secondary mirror, a compensating minor, and a spherical mirror. The primary minor, the secondary minor, the compensating minor, and the spherical mirror are spaced from each other. A surface shape of each of the primary mirror and the secondary mirror is a quadric surface. The primary mirror is used as an aperture stop. A surface shape of the compensating mirror is a freeform surface. A surface shape of the spherical mirror is a spherical surface. A light emitted from a light source would be reflected by the primary mirror, the secondary minor, the compensating mirror, and the spherical mirror to form an image on an image plane.
摘要:
The present disclosure relates to a method of designing a freeform surface off-axial imaging system. The method comprises the steps of establishing an initial system and selecting feature fields; gradually enlarging a construction of feature field, and constructing the initial system into a freeform surface system; and expanding a construction area of each freeform surface of the freeform surface system, and reconstructing the freeform surface in an extended construction area.
摘要:
A light intensity distribution comprises a carbon nanotube array located on a surface of a substrate, a reflector, an imaging element and a cooling device. The carbon nanotube array absorbs photons from a light source and radiates a visible light. The reflector reflects the visible light and is spaced from the carbon nanotube array. The imaging element images the visible light reflected by the reflector. The cooling device is used to cool the substrate to make a contact surface between the substrate and the carbon nanotube array maintain a constant temperature. The cooling device is located between the substrate and the imaging device. The imaging device is spaced from the cooling device.
摘要:
A freeform surface off-axial three-mirror image-side telecentric optical system comprises a primary mirror, a secondary mirror, a tertiary mirror and an image sensor. The secondary mirror is the aperture stop. A reflective surface of the primary mirror is a fourth-order polynomial freeform surface of xy. Each of a reflective surface of the secondary mirror and a reflective surface of the tertiary mirror is a sixth-order polynomial freeform surface of xy.
摘要:
An initial system and a constraint condition are established. All freeform surfaces are obtained by surface fitting the feature data points to form a first freeform surface imaging optical system. The first freeform surface imaging optical system is taken as the initial system for multiple iterations to obtain a second freeform surface imaging optical system. The second freeform surface imaging optical system is taken as a first base system. A first surface freedom of the first base system is selected, the values nearby the first surface freedom is selected, and surface positions and tilts of the first base system are changed to obtain a third freeform surface imaging optical system that satisfies the constraint condition. A second base system is selected and the method above is repeated. The freeform surface imaging optical system is obtained until all freedoms for surface positions and tilts have been used.
摘要:
A method for designing an off-axis aspheric optical system comprises establishing an initial system and selecting a plurality of feature rays Ri (i=1, 2 . . . K); solving a plurality of feature data points (P1, P2, . . . Pm) to obtain an initial off-axis aspheric surface Am by surface fitting the plurality of feature data points (P1, P2, . . . Pm), wherein m is less than K; introducing an intermediate point Gm to solve a (m+1)th feature data point Pm+1, and fitting a plurality of feature data points (P1, P2, . . . Pm, Pm+1) to obtain an off-axis aspheric surface Am+1; repeating such steps until a Kth feature data point PK is solved, and fitting a plurality of feature data points (P1, P2, . . . PK) to obtain an off-axis aspheric surface AK; and repeating above steps until all the aspheric surfaces of the off-axis aspheric optical system are obtained.
摘要:
A method for designing off-axial optical system with freeform surfaces is provided. An initial system is established. A freeform surface of the off-axial optical system that needs to be solved is defined as a freeform surface. A number of feature rays are selected. A number of intersections of the feature rays with the freeform surface are calculated point by point based on a given object-image relationship and a vector form of Snell's law. A number of first feature data points are obtained from the intersections and surface fitted to obtain the freeform surface. All the freeform surfaces of the off-axial optical system that need to be solved are obtained by the method above to form a before-iteration off-axial optical system. The before-iteration off-axial optical system is used as the initial system for multiple iterations to obtain an after-iteration off-axial optical system.