Abstract:
A computer system, which estimates a radio wave propagation characteristic in a space where a wireless communication system using structure data and system data is constructed, includes a computer having a processor and a storage apparatus and holds feature parameter information, which stores an entry that associates a parameter included in structure data, that is, a feature parameter which greatly contributes to an estimation result of the radio wave propagation characteristic in the space with a type of the space. When receiving a request for estimation of a radio wave propagation characteristic in a target space, the processor retrieves an entry associated with a type of the target space from the feature parameter information, and presents an interface to input a value of the feature parameter included in the retrieved entry as estimation structure data and an interface to input estimation system data.
Abstract:
A period is defined to execute the sequences (processes) of communication data acquisition, measuring communication quality, communication quality data acquisition, and channel change. Processing is controlled to execute each process within a time limit set for each process and execute all processes in one cycle. This avoids that a delayed sequence influences and delays other sequences and can suppress delays. If processing fails to finish a sequence, it will resume the same sequence in the next cycle. For communication stations sharing timeslots, there are provided offset periods differing in length before the start of carrier sense in the timeslots for these stations. Consequently, even under a condition in which packet collision may occur, the collision of packets can be avoided by detecting a packet sent to another station by carrier sense. Moreover, by controlling sending priority of packets in the send queue of the gateway, sending delay can be avoided.
Abstract:
A radio communication system using an orthogonal frequency division multiplexing system, including: a baseband unit; and one or plural remote radio units coupled with the baseband unit through an interface; wherein the baseband unit includes a first sample frequency conversion part that performs a first sample frequency conversion processing that down-samples a transmitting signal transmitted through the interface, wherein the remote radio unit includes a second sample frequency conversion part that performs a second sample frequency conversion processing that up-samples a signal received through the interface, and wherein the baseband unit further includes an inverse fast fourier transform part that generates the transmitting signal by an inverse fast fourier transform, and a transmitter characteristic compensation part that conducts frequency characteristic compensation of the first sample frequency conversion processing and the second sample frequency conversion processing for a signal that has not been subjected to the inverse fast fourier transform.
Abstract:
This invention provides a mobile communication system which expanded the operation limitation of the heretofore adopted mobile communication systems and improved the spectrum efficiency greatly. A data transmission method for use in the mobile communication system of the present invention includes means for channel pluralizing by which to expand the Shannon limit and means for interference reduction by which to expand the interference limit. More specifically, a transmitting module comprises M units of modulators and L units of transmitting antennas, generates L units of signals by multiplying M units of modulated signals by a complex matrix consisting of M×L units of elements, and transmits the L units of signals from the L units of transmitting antennas.
Abstract:
A period is defined to execute the sequences (processes) of communication data acquisition, measuring communication quality, communication quality data acquisition, and channel change. Processing is controlled to execute each process within a time limit set for each process and execute all processes in one cycle. This avoids that a delayed sequence influences and delays other sequences and can suppress delays. If processing fails to finish a sequence, it will resume the same sequence in the next cycle. For communication stations sharing timeslots, there are provided offset periods differing in length before the start of carrier sense in the timeslots for these stations. Consequently, even under a condition in which packet collision may occur, the collision of packets can be avoided by detecting a packet sent to another station by carrier sense. Moreover, by controlling sending priority of packets in the send queue of the gateway, sending delay can be avoided.
Abstract:
This invention provides a mobile communication system which expanded the operation limitation of the heretofore adopted mobile communication systems and improved the spectrum efficiency greatly. A data transmission method for use in the mobile communication system of the present invention includes means for channel pluralizing by which to expand the Shannon limit and means for interference reduction by which to expand the interference limit. More specifically, a transmitting module comprises M units of modulators and L units of transmitting antennas, generates L units of signals by multiplying M units of modulated signals by a complex matrix consisting of M×L units of elements, and transmits the L units of signals from the L units of transmitting antennas.