Abstract:
The present invention generally relates to a magnetic sensor in a read head having a hard or soft bias layer that is uniform in thickness within the sensor stack. The method of making such sensor is also disclosed. The free layer stripe height is first defined, followed by defining the track width, and lastly the pinned layer stripe height is defined. The pinned layer and the hard or soft bias layer are defined in the same process step. This approach eliminates a partial hard or soft bias layer and reduces potential instability issues.
Abstract:
In one general embodiment, a magnetic head includes a stitch pole; and a main pole formed adjacent the stitch pole, wherein an end region of the stitch pole closest to an air bearing surface of the head tapers towards the main pole. In another general embodiment, a magnetic head includes a stitch pole being a laminate of at least two magnetic layers separated b a nonmagnetic layer; and a main pole formed adjacent the stitch pole. An end region of the stitch pole closest to an bearing surface of the bead tapers towards the main pole. An average angle of the taper of the end region of the stitch pole is between about 20 and about 45 degrees. Such head may be implemented in a data storage system.
Abstract:
A current-perpendicular-to-the-plane magnetoresistive sensor structure includes at least an improved top shield structure and optionally also a similar bottom shield structure. The top shield structure includes an antiparallel structure (APS) of two ferromagnetic films and a nonmagnetic antiparallel coupling (APC) film between them. The APC film induces antiferromagnetic (AF) coupling between the two ferromagnetic films so that they have their respective magnetizations oriented antiparallel. An important aspect of the APS is that there is no antiferromagnetic layer adjacent the upper ferromagnetic film, so that the upper ferromagnetic film does not have its magnetization pinned by an antiferromagnetic layer. An electroplated shield layer is formed above the APS. A nonmagnetic decoupling layer is located between the APS and the electroplated shield layer to prevent domain wall movement in the electroplated shield from transferring to the ferromagnetic layers in the APS and thus possibly induce noise in the sensor.
Abstract:
In one general embodiment, a magnetic head includes a stitch pole; and a main pole formed adjacent the stitch pole, wherein an end region of the stitch pole closest to an air bearing surface of the head tapers towards the main pole. In another general embodiment, a magnetic head includes a stitch pole being a laminate of at least two magnetic layers separated by a nonmagnetic layer; and a main pole formed adjacent the stitch pole. An end region of the stitch pole closest to an air bearing surface of the head tapers towards the main pole. An average angle of the taper of the end region of the stitch pole is between about 20 and about 45 degrees. Such head may be implemented in a data storage system.