Abstract:
A method for managing a dynamically-sized chunked spreadsheet model on a server includes creating, on the server, a plurality of chunks representing a spreadsheet, where a first chunk in the plurality of chunks includes a first range of cells in the spreadsheet. The method further includes storing on the server a mutation log for the spreadsheet, and receiving a first plurality of mutations from a plurality of client computers, where the first plurality of mutations are stored in the mutation log. The method further includes applying the first plurality of mutations to the first chunk in response to a first client computer in the plurality of client computers requesting the first range of cells, and sending the first chunk to the first client computer.
Abstract:
Mutations representing spreadsheet edit operations are received at a server from client computers of collaborators and also at a collaborator's client computer from other collaborators and the server. Different mutations may conflict, i.e., provide contradictory instructions on how a spreadsheet is to be edited. Techniques for representing sort operations, cut-and-paste operations, and operations to change cell properties as mutations, and operational transform techniques that can be used to resolve conflicts between such mutations, are disclosed herein. Further disclosed herein are techniques for identifying and processing computationally intensive types of mutations in a calculation thread which operates asynchronously with respect to a UI thread at a collaborator's client computer. The processing may include performing an operational transform on results of the calculation thread based on results obtained in the UI thread.
Abstract:
Systems and methods are disclosed herein for an operational transformation proxy for a thin client. The systems and methods may be used for collaboratively editing an electronic object such as an electronic document from a thin client. A first request is received at an OT proxy from the thin client to make a first change to a first version of the electronic object. A first mutation, including the first change to the first version of the electronic document, is created. A second mutation is received at the OT proxy from the server. At the OT proxy, the second mutation of the electronic object is converted into a third mutation of the electronic object based on the first mutation.
Abstract:
Mutations representing spreadsheet edit operations are received at a server from client computers of collaborators and also at a collaborator's client computer from other collaborators and the server. Different mutations may conflict, i.e., provide contradictory instructions on how a spreadsheet is to be edited. Techniques for representing sort operations, cut-and-paste operations, and operations to change cell properties as mutations, and operational transform techniques that can be used to resolve conflicts between such mutations, are disclosed herein. Further disclosed herein are techniques for identifying and processing computationally intensive types of mutations in a calculation thread which operates asynchronously with respect to a UI thread at a collaborator's client computer. The processing may include performing an operational transform on results of the calculation thread based on results obtained in the UI thread.
Abstract:
Mutations representing spreadsheet edit operations are received at a server from client computers of collaborators and also at a collaborator's client computer from other collaborators and the server. Different mutations may conflict, i.e., provide contradictory instructions on how a spreadsheet is to be edited. Techniques for representing sort operations, cut-and-paste operations, and operations to change cell properties as mutations, and operational transform techniques that can be used to resolve conflicts between such mutations, are disclosed herein. Further disclosed herein are techniques for identifying and processing computationally intensive types of mutations in a calculation thread which operates asynchronously with respect to a UI thread at a collaborator's client computer. The processing may include performing an operational transform on results of the calculation thread based on results obtained in the UI thread.
Abstract:
Mutations representing spreadsheet edit operations are received at a server from client computers of collaborators and also at a collaborator's client computer from other collaborators and the server. Different mutations may conflict, i.e., provide contradictory instructions on how a spreadsheet is to be edited. Techniques for representing sort operations, cut-and-paste operations, and operations to change cell properties as mutations, and operational transform techniques that can be used to resolve conflicts between such mutations, are disclosed herein. Further disclosed herein are techniques for identifying and processing computationally intensive types of mutations in a calculation thread which operates asynchronously with respect to a UI thread at a collaborator's client computer. The processing may include performing an operational transform on results of the calculation thread based on results obtained in the UI thread.
Abstract:
A method for managing a dynamically-sized chunked spreadsheet model on a server includes creating, on the server, a plurality of chunks representing a spreadsheet, where a first chunk in the plurality of chunks includes a first range of cells in the spreadsheet. The method further includes storing on the server a mutation log for the spreadsheet, and receiving a first plurality of mutations from a plurality of client computers, where the first plurality of mutations are stored in the mutation log. The method further includes applying the first plurality of mutations to the first chunk in response to a first client computer in the plurality of client computers requesting the first range of cells, and sending the first chunk to the first client computer.
Abstract:
Systems and methods are disclosed herein for an operational transformation proxy for a thin client. The systems and methods may be used for collaboratively editing an electronic object such as an electronic document from a thin client. A first request is received at an OT proxy from the thin client to make a first change to a first version of the electronic object. A first mutation, including the first change to the first version of the electronic document, is created. A second mutation is received at the OT proxy from the server. At the OT proxy, the second mutation of the electronic object is converted into a third mutation of the electronic object based on the first mutation.