Abstract:
Arrangements for bone conduction transducers (BCTs) that couple to wearable devices are described herein. An example BCT couples to a wearable device via a moveable member, and is arranged on the wearable such that the BCT member moves so as to provide an indication as to whether or not the wearable device is being worn.
Abstract:
Arrangements for bone conduction transducers (BCTs) that couple to wearable devices are described herein. An example BCT couples to a wearable device via a moveable member, and is arranged on the wearable such that the BCT member moves so as to provide an indication as to whether or not the wearable device is being worn.
Abstract:
An example of a connector for host devices is provided. Aspects of the disclosure relate generally to a connector that allows a user to blindly connect the connector to a host device. For example, a magnetic system between the connector and host device may attract when the connector is oriented correctly with the host device's socket, and repel when the connector is incorrectly oriented. The connector may have a cord that is positioned such that, when the user incorrectly orients the connector over the host device's socket, the cord may interfere with the host device's housing, thereby indicating to the user to re-orient the connector. The connector may also employ multiplexed pins so the pins can perform more than a single function. For example, the data (D+/D−) pins may transmit music in the form of audio signals, and information content in the form of electrical signals.
Abstract:
An example of a wearable device, such as a head mounted device, without a power button while still implementing the functions of a typical power button is provided. A sensor may be positioned adjacent to a hinge so as to detect the orientation thereof, such as detecting whether the hinge is in the opened or closed position. The sensor may output a signal that indicates the detected orientation of the hinge to a microcontroller. The microcontroller may then output a signal to a power management integrated circuit that alters the current state of the device. For instance, the signal sent to the power management integrated circuit may power on or off the head mounted device, or place the device in a sleep state. In this regard, the head mounted device is capable of switching between states without the use of a typical power button.
Abstract:
An example method includes detecting a signal that represents a strain of a frame of a wearable computing device and causing the wearable computing device to perform a function based on the detected signal. The method may also include generating a representation of the detected signal, comparing the representation of the signal to a threshold value, and causing the wearable computing device to perform a function based on the comparison to the threshold value. An example wearable computing device and an example non-transitory computer readable medium related to the example method are also disclosed herein.
Abstract:
An example of a waterproof hinge and button configuration for a head mounted device is provided. A magnet may be attached to the button, and a sensor may be positioned adjacent to the button to detect movement of the button. For example, the sensor may detect when the button is fully pressed, partially pressed, or not pressed at all by the level of magnetic flux density detected by the sensor. In addition, the sensor may detect an opened or closed position of the hinge based on the magnetic field polarity of the magnet. Due to the implementation of the sensor, the electrical components of the button are able to be removed so as to make the button-hinge configuration waterproof.
Abstract:
An example of a waterproof hinge and button configuration for a head mounted device is provided. A magnet may be attached to the button, and a sensor may be positioned adjacent to the button to detect movement of the button. For example, the sensor may detect when the button is fully pressed, partially pressed, or not pressed at all by the level of magnetic flux density detected by the sensor. In addition, the sensor may detect an opened or closed position of the hinge based on the magnetic field polarity of the magnet. Due to the implementation of the sensor, the electrical components of the button are able to be removed so as to make the button-hinge configuration waterproof.
Abstract:
An example method includes detecting a signal that represents a strain of a frame of a wearable computing device and causing the wearable computing device to perform a function based on the detected signal. The method may also include generating a representation of the detected signal, comparing the representation of the signal to a threshold value, and causing the wearable computing device to perform a function based on the comparison to the threshold value. An example wearable computing device and an example non-transitory computer readable medium related to the example method are also disclosed herein.