Abstract:
In one aspect, a request to alter a first image is received. The request includes a portion of the first image that is provided for display with a second image. The second image is associated with three-dimensional (3D) geometry data for an object depicted in both the first and second images and date information identifying when the second image was captured. Input identifying an area of the second image is received. A third image is identified based on the date information of the third image and the second image. The third image is associated with 3D geometry data for the object. An area of the third image is determined based on the 3D geometry data of the second image, the 3D geometry data of the second image, and the area of the second image. Information identifying the area of the third image is provided for display with the third image.
Abstract:
An apparatus and method are disclosed for performing loop closing on one or more paths to be optimized. The paths may include poses associated with imagery obtained by a vehicle. The apparatus may identify candidate intersections from the paths based on their proximity, and may further determine relative poses from the poses of the paths using structure-from-motion techniques. The apparatus may then apply a partitioning schema to the paths to be optimized to obtain individual partition cells. The partition cells may then be sent to one or more client devices for optimizing the paths included in the partition cells. When the apparatus receives a set of optimized paths from the client devices, the apparatus may re-partition the paths to be optimized to ensure that non-optimized portions of paths are optimized.
Abstract:
Systems and methods for identifying prominent landmarks in a geographic area are provided. More particularly, geographic imagery data, such as panoramic images captured by a camera from a perspective at or near ground level, can be analyzed to identify landmarks depicted in the geographic imagery data. For instance, structure-from-motion techniques can be used to generate a point cloud of tracked features that are located a threshold distance away from one or more camera perspectives associated with the geographic imagery data. Landmarks that are visible from multiple camera perspectives and that are visible from greater distances relative to one or more camera perspectives can be identified as prominent landmarks in a geographic area. A geographic information system can use the prominent landmarks for a variety of purposes, such as for use in providing travel directions, for rendering landmarks in an emphasized style, and/or for constructing/displaying a three-dimensional model of the landmark.
Abstract:
In one aspect, a request to alter a first image is received. The request includes a portion of the first image that is provided for display with a second image. The second image is associated with three-dimensional (3D) geometry data for an object depicted in both the first and second images and date information identifying when the second image was captured. Input identifying an area of the second image is received. A third image is identified based on the date information of the third image and the second image. The third image is associated with 3D geometry data for the object. An area of the third image is determined based on the 3D geometry data of the second image, the 3D geometry data of the second image, and the area of the second image. Information identifying the area of the third image is provided for display with the third image.
Abstract:
Systems and methods for identifying prominent landmarks in a geographic area are provided. More particularly, geographic imagery data, such as panoramic images captured by a camera from a perspective at or near ground level, can be analyzed to identify landmarks depicted in the geographic imagery data. For instance, structure-from-motion techniques can be used to generate a point cloud of tracked features that are located a threshold distance away from one or more camera perspectives associated with the geographic imagery data. Landmarks that are visible from multiple camera perspectives and that are visible from greater distances relative to one or more camera perspectives can be identified as prominent landmarks in a geographic area. A geographic information system can use the prominent landmarks for a variety of purposes, such as for use in providing travel directions, for rendering landmarks in an emphasized style, and/or for constructing/displaying a three-dimensional model of the landmark.
Abstract:
Systems and methods for identifying prominent landmarks in a geographic area are provided. More particularly, geographic imagery data, such as panoramic images captured by a camera from a perspective at or near ground level, can be analyzed to identify landmarks depicted in the geographic imagery data. For instance, structure-from-motion techniques can be used to generate a point cloud of tracked features that are located a threshold distance away from one or more camera perspectives associated with the geographic imagery data. Landmarks that are visible from multiple camera perspectives and that are visible from greater distances relative to one or more camera perspectives can be identified as prominent landmarks in a geographic area. A geographic information system can use the prominent landmarks for a variety of purposes, such as for use in providing travel directions, for rendering landmarks in an emphasized style, and/or for constructing/displaying a three-dimensional model of the landmark.