Abstract:
Purified lead and antimony oxide are produced from antimonial lead alloys by oxidation of the molten alloy to form purified metallic lead and a slag of lead oxides and antimony oxides, separation of the metal and slag, and subsequent partial reduction and fuming of the slag to produce pure antimony oxide.
Abstract:
A composition of matter comprising a mass of ferrous scrap pieces compressed together in random orientation forming a network of interlocking pieces has been prepared.This ferrous metal network is impregnated with rare earth metals in amount from 15% to 80% by weight of the impregnated body. The rare earth metal impregnated body is useful for treating high melting metals, particularly to deoxidize or desulfurize steel and to produce nodular iron.
Abstract:
A composition of matter comprising a mass of ferrous scrap pieces compressed together in random orientation forming a network of interlocking pieces has been prepared. The ferrous metal network has a density of 1.2 to 6.3 g/cc, a porosity of 20 to 85%, and a short transverse tensile strength (S.T.T.S.) of at least 2.0 psi, preferably at least 2.5 psi.This ferrous metal network may be impregnated with magnesium in amount from 5 to 55% by weight of the impregnated body. The magnesium impregnated body is useful for treating high melting metals, such as ferrous metal to reduce the sulphur content and to produce nodular iron.
Abstract:
Magnesium alloys containing up to 12 percent of aluminum, up to 30 percent of zinc, up to 1.5 percent of silicon, not more than 0.15 percent of manganese, and from 0.0025 percent to 0.0125 percent of dissolved beryllium are disclosed. The alloys are resistant to oxidation when they are in a molten state. A method for die casting such alloys is also disclosed.
Abstract:
A composition of matter comprising a mass of ferrous scrap pieces compressed together in random orientation forming a network of interlocking pieces has been prepared. The ferrous metal network has a density of 1.2 to 6.3 g/cc, a porosity of 20% to 85%, and a short transverse tensile strength (S.T.T.S.) of at least 2.0 psi, preferably at least 2.5 psi.This ferrous metal network may be impregnated with magnesium in amount from 5% to 55% by weight of the impregnated body. The magnesium impregnated body is useful for treating high melting metals, such as ferrous metal to reduce the sulphur content and to produce nodular form.
Abstract:
An alkali metal containing low antimonial content lead alloy characterized by improved ductility for use as an electric storage battery grid or in acidic environments suitably contains from 0.5% to 3.0% Sb, 0.01% to 0.7% As, 0.001% to 0.7% Sn, 0.001% to 0.15% Cu, 0.001% to 0.015% S or 0.001% to 0.05% Se or admixtures thereof and 0.001% to 0.05% of an alkali metal. Battery grids made from the alloy are resistant to electrochemical corrosion, gassing, and grid growth as well as exhibiting improved bend ductility.
Abstract:
An electric storage battery grid made from an improved low antimonial content lead alloy is disclosed. The battery grid can be used to manufacture maintenance free lead acid storage batteries. The alloy has an improved combination of low gassing rate and hardness, castability and pasteability and contains less than 2.0%, i.e. approximately 1.3 to 1.9 weight percent antimony, 0.05 to 0.45 percent arsenic and 0.02 to 0.5 weight percent tin as well as small amounts of copper and sulfur.
Abstract:
A composition of matter comprising a mass of ferrous scrap pieces compressed together in random orientation forming a network of interlocking pieces has been prepared. The ferrous metal network has a density of 1.2 to 4.0 g/cc, a porosity of 50% to 85% and a short transverse tensile strength (S.T.T.S.) of at least 2 psi, preferably at least 2.5 psi.This ferrous metal network may be impregnated with magnesium in amount from 18 to 55% by weight of the impregnated body. The magnesium impregnated body is useful for treating high melting metals such as ferrous metal to reduce the sulphur content or to produce nodular iron.
Abstract:
A composition of matter comprising a mass of ferrous scrap pieces compressed together in random orientation forming a network of interlocking pieces has been prepared. The ferrous metal network has a density of 1.2 to 4.0 g/cc, a porosity of 50% to 85% and a short transverse tensile strength (S.T.T.S.) of at least 2 psi, preferably at least 2.5 psi.This ferrous metal network is impregnated with magnesium in amount from 18% to 55% by weight of the impregnated body. The magnesium impregnated body is useful for treating high melting metals such as ferrous metal to reduce the sulphur content or to produce nodular iron.