摘要:
An immiscible lipophilic or hydrophilic liquid phase separated respectively from a continuous hydrophilic phase or a lipophilic phase liquid. Fibers having hydrophilic and hydrophobic properties are mixed, layered, etc., and formed into a filter. The separation mechanism involves capture of small droplets of the immiscible phase, coalescence of the small droplets into larger droplets as the immiscible liquid flows through the fiber filter, and release of the large immiscible droplets from the filter. With respect to separation of a hydrophilic immiscible fluid such as water in a lipophilic continuous fluid such as oil, the hydrophobic fibers will cause small water droplets to migrate towards the hydrophilic fibers whereby large droplets are formed on hydrophilic surface. The large droplets stay on hydrophilic fiber surface for extended periods of time and continue to coalescence until they are so large that they can no longer be maintained by the hydrophilic fibers and are released and drained off of the filter. In designing such filter, wettability of the filter media is an important parameter. The filter media can be designed by mixing hydrophilic and hydrophobic fibers in various proportions to achieve an optimum wettability range for separation of the immiscible liquid from the continuous phase liquid. The wettability of filter media can be characterized by a modified Washburn Equation.
摘要:
An immiscible lipophilic or hydrophilic liquid phase separated respectively from a continuous hydrophilic phase or a lipophilic phase liquid. Fibers having hydrophilic and hydrophobic properties are formed into a filter. The separation mechanism involves capture of small droplets of the immiscible phase, coalescence of the small droplets into larger droplets as the immiscible liquid flows through the fiber filter, and release of the large immiscible droplets from the filter. Regarding separation of a hydrophilic immiscible fluid such as water in a lipophilic continuous fluid such as oil, the hydrophobic fibers cause small water droplets to migrate towards the hydrophilic fibers whereby large droplets form on hydrophilic surface. The large droplets stay on hydrophilic fiber surface for extended periods of time and continue to coalescence until they are so large that they can no longer be maintained by the hydrophilic fibers and are released and drained off of the filter.
摘要:
An immiscible lipophilic or hydrophilic liquid phase is separated respectively from a continuous hydrophilic or a lipophilic phase liquid. Fibers having hydrophilic and hydrophobic properties are formed into a filter. The separation mechanism involves coalescence of the small droplets into larger droplets as the immiscible liquid flows through the fiber filter, and release of the large immiscible droplets from the filter. With respect to separation of a hydrophilic immiscible fluid in a lipophilic continuous fluid, the hydrophobic fibers cause small water droplets to migrate towards the hydrophilic fibers whereby large droplets are formed on hydrophilic surface. The large droplets coalescence until they are so large that they are released and drained off of the filter. The filter media can be designed by mixing hydrophilic and hydrophobic fibers in various proportions to achieve an optimum wettability range for separation of the immiscible liquid from the continuous phase liquid.
摘要:
An immiscible lipophilic or hydrophilic liquid phase separated respectively from a continuous hydrophilic phase or a lipophilic phase liquid. Fibers having hydrophilic and hydrophobic properties are formed into a filter. The separation mechanism involves capture of small droplets of the immiscible phase, coalescence of the small droplets into larger droplets as the immiscible liquid flows through the fiber filter, and release of the large immiscible droplets from the filter. Regarding separation of a hydrophilic immiscible fluid such as water in a lipophilic continuous fluid such as oil, the hydrophobic fibers cause small water droplets to migrate towards the hydrophilic fibers whereby large droplets form on hydrophilic surface. The large droplets stay on hydrophilic fiber surface for extended periods of time and continue to coalescence until they are so large that they can no longer be maintained by the hydrophilic fibers and are released and drained off of the filter.
摘要:
An immiscible lipophilic or hydrophilic liquid phase separated respectively from a continuous hydrophilic phase or a lipophilic phase liquid. Fibers having hydrophilic and hydrophobic properties are mixed, layered, etc., and formed into a filter. The separation mechanism involves capture of small droplets of the immiscible phase, coalescence of the small droplets into larger droplets as the immiscible liquid flows through the fiber filter, and release of the large immiscible droplets from the filter. With respect to separation of a hydrophilic immiscible fluid such as water in a lipophilic continuous fluid such as oil, the hydrophobic fibers will cause small water droplets to migrate towards the hydrophilic fibers whereby large droplets are formed on hydrophilic surface. The large droplets stay on hydrophilic fiber surface for extended periods of time and continue to coalescence until they are so large that they can no longer be maintained by the hydrophilic fibers and are released and drained off of the filter. In designing such filter, wettability of the filter media is an important parameter. The filter media can be designed by mixing hydrophilic and hydrophobic fibers in various proportions to achieve an optimum wettability range for separation of the immiscible liquid from the continuous phase liquid. The wettability of filter media can be characterized by a modified Washburn Equation.
摘要:
Computer software, systems and methods for providing context personalized browsing over computer networks. In the foregoing, an intelligent agent referred to as a “browser companion agent” includes a service component for holding one or more service modules that may assist a user by providing services that are contextually relevant to content on a browser on the user's computer system. The agent also includes a data component for holding data objects related to and sharable by one or more service modules. The agent further includes a tracking component for tracking the pages on a browser and for communicating browser page data to a remote computer system that may respond to the agent with data or code for use by service modules. Contemplated service modules include a comparison shopping service, a transaction tracking service, and automated form filling service.
摘要:
Computer software, systems and methods for providing context personalized browsing over computer networks. In the foregoing, an intelligent agent referred to as a “browser companion agent” includes a service component for holding one or more service modules that may assist a user by providing services that are contextually relevant to content on a browser on the user's computer system. The agent also includes a data component for holding data objects related to and sharable by one or more service modules. The agent further includes a tracking component for tracking the pages on a browser and for communicating browser page data to a remote computer system that may respond to the agent with data or code for use by service modules. Contemplated service modules include a comparison shopping service, a transaction tracking service, and automated form filling service.
摘要:
Computer software, systems and methods for providing context personalized browsing over computer networks. In the foregoing, an intelligent agent referred to as a “browser companion agent” includes a service component for holding one or more service modules that may assist a user by providing services that are contextually relevant to content on a browser on the user's computer system. The agent also includes a data component for holding data objects related to and sharable by one or more service modules. The agent further includes a tracking component for tracking the pages on a browser and for communicating browser page data to a remote computer system that may respond to the agent with data or code for use by service modules. Contemplated service modules include a comparison shopping service, a transaction tracking service, and automated form filling service.
摘要:
An immiscible lipophilic or hydrophilic liquid phase is separated respectively from a continuous hydrophilic or a lipophilic phase liquid. Fibers having hydrophilic and hydrophobic properties are formed into a filter. The separation mechanism involves coalescence of the small droplets into larger droplets as the immiscible liquid flows through the fiber filter, and release of the large immiscible droplets from the filter. With respect to separation of a hydrophilic immiscible fluid in a lipophilic continuous fluid, the hydrophobic fibers cause small water droplets to migrate towards the hydrophilic fibers whereby large droplets are formed on hydrophilic surface. The large droplets coalescence until they are so large that they are released and drained off of the filter. The filter media can be designed by mixing hydrophilic and hydrophobic fibers in various proportions to achieve an optimum wettability range for separation of the immiscible liquid from the continuous phase liquid.