Additive manufacturing using a selective recoater

    公开(公告)号:US10478893B1

    公开(公告)日:2019-11-19

    申请号:US15406461

    申请日:2017-01-13

    摘要: The present disclosure generally relates to additive manufacturing systems and methods on a large-scale format. One aspect involves a build unit that can be moved around in three dimensions by a positioning system, building separate portions of a large object. The build unit has an energy directing device that directs, e.g., laser or e-beam irradiation onto a powder layer. In the case of laser irradiation, the build volume may have a gasflow device that provides laminar gas flow to a laminar flow zone above the layer of powder. This allows for efficient removal of the smoke, condensates, and other impurities produced by irradiating the powder (the “gas plume”) without excessively disturbing the powder layer. The build unit may also have a recoater that allows it to selectively deposit particular quantities of powder in specific locations over a work surface to build large, high quality, high precision objects.

    Methods and thermal structures for additive manufacturing

    公开(公告)号:US10471695B2

    公开(公告)日:2019-11-12

    申请号:US15335116

    申请日:2016-10-26

    摘要: The present disclosure generally relates to methods for additive manufacturing (AM) that utilize thermal dissipation support structures in the process of building objects, as well as novel thermal dissipation support structures to be used within these AM processes. The thermal dissipation support structures include at least one sacrificial structure that is separated from the object by a portion of unfused powder. The sacrificial structure increases a thermal dissipation rate of at least a portion of the object such that such that thermal gradients in the object remain below a specified threshold that prevents deformation of the object.

    Large scale additive machine
    9.
    发明授权

    公开(公告)号:US10022795B1

    公开(公告)日:2018-07-17

    申请号:US15406471

    申请日:2017-01-13

    摘要: The present disclosure generally relates to additive manufacturing systems and methods on a large-scale format. One aspect involves a build unit that can be moved around in three dimensions by a positioning system, building separate portions of a large object. The build unit has an energy directing device that directs, e.g., laser or e-beam irradiation onto a powder layer. In the case of laser irradiation, the build volume may have a gasflow device that provides laminar gas flow to a laminar flow zone above the layer of powder. This allows for efficient removal of the smoke, condensates, and other impurities produced by irradiating the powder (the “gas plume”) without excessively disturbing the powder layer. The build unit may also have a recoater that allows it to selectively deposit particular quantities of powder in specific locations over a work surface to build large, high quality, high precision objects.