Abstract:
A turbine engine includes a rotor, a stator, and a seal assembly disposed between the rotor and the stator. The seal assembly includes seal segment. The seal segment includes a seal face that is configured to form a fluid bearing with the rotor. A lift channel extends within the seal segment from an opening on the seal face. The turbine engine further includes a spring assembly disposed within the lift channel. The spring assembly including a biasing element and a piston element coupled to the biasing element. The lift channel includes a lift volume portion extending is between the opening and the piston element. The piston element is movable within the lift channel based on a pressure within the fluid bearing to adjust a size of the lift volume portion.
Abstract:
A bearing housing for supporting a bearing within a gas turbine engine may generally include a mounting flange and a bearing support ring positioned radially inwardly from the mounting flange. The bearing support ring may be configured to at least partially surround an outer race of the bearing. The bearing housing may also include a support beam spaced axially apart from the mounting flange and the bearing ring, a plurality of inner spring fingers extending axially between the bearing support ring and the support beam and a plurality of outer spring fingers extending axially between the mounting flange and the support beam. At least a portion of each inner spring finger may be spaced apart radially from at least a portion of each outer spring finger. In addition, the inner spring fingers may be circumferentially offset from the outer spring fingers.
Abstract:
Variable sleeve clearance control systems for gas turbine engines are disclosed. An example variable sleeve clearance control system for a gas turbine engine includes a sleeve comprising a first end and a second end, the first end of the sleeve coupled to a first spring that biases the sleeve inward, and the second end of the sleeve coupled to a second spring that biases the sleeve outward, a proximity sensor to measure a clearance width, and a controller for each of the first and second springs, the controller to obtain the measured clearance width from the proximity sensor and determine a response of the first and second springs.
Abstract:
A support assembly for a load-bearing unit, a gas turbine engine including the support assembly, and a method of operation of the support assembly are provided. The support assembly includes a support element, a damper, and a variable stiffness member. The support element supports the load-bearing unit. The damper supports the support element and is configured to provide dampening of the load-bearing unit. The variable stiffness member is positioned between the damper and the load-bearing unit. The variable stiffness member is configured to provide a serial dampening of the load-bearing unit with the damper. The variable stiffness member includes a shape memory alloy.
Abstract:
In one aspect, a bearing assembly for supporting a rotor shaft relative to a support structure of a gas turbine engine may generally include a bearing including an outer race and an inner race, an outer bearing housing configured to extend radially between the outer race of the bearing and the support structure of the gas turbine engine and an inner bearing support configured to extend radially between the inner race of the bearing and the rotor shaft. In addition, the outer bearing housing and the inner bearing support each include at least one radially extending spring arm such that the outer bearing housing and the inner bearing support collectively form two springs coupled in series between the support structure and the rotor shaft.
Abstract:
A bearing assembly for use in a gas turbine engine is provided. The bearing assembly includes a bearing retainer having an inner portion, an outer portion spaced radially apart from the inner portion, and an intermediate portion connecting the inner portion and the outer portion, wherein the inner portion and the outer portion define a space there-between. The bearing assembly also includes a bearing housing having an extended portion positioned within the space. The bearing assembly also includes a locking assembly comprising a locking plate and an axial keyway that extends axially away from the locking plate. The locking plate is coupled to the bearing retainer and the axial keyway is coupled to the extended portion of the bearing housing.